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AN  EXPLORATORY  STUDY  TO  DETERMINE THE INTEGRATED 
TECHNOLOGICAL  AIR  TRANSPORTATION  SYSTEM  GROUND 
REQUIREMENTS OF LIQUID-HYDROGEN-FUELED  SUBSONIC, 

LONG-HAUL  CIVIL  AIR  TRANSPORTS 

Prel iminary  Design  Department  
Boeing Commercial   Airplane  Company 

1.0 SUMMARY 

This  exploratory  study  resulted  in  (a)  the  definition of potential  liquid  hydrogen (LH2) 
fueling  system  concepts  that could be  installed  and  operated on existing  airports,  (b)  the 
technical  and economic impact of those  systems on airport  and  airline  operations,  and 
(c) identification of the  research  and  technology  effort  that would  be required  to  ensure 
that  the  airport  portion of an LH2 fueled  air  transport  system could  be made  available, 
should  the  United  States  wish  to  exercise  that  option.  The  existing  and  planned 
facilities a t   the  Chicago-O'Hare  International  Airport (ORD) were  used as the  focus of 
the  major  part of the  study.  Gross  extrapolations  were  made  to  other  airports  and  a 
potential  scenario for introduction of  LH2 fuel  into  the  air  transportation  system  was 
developed  and  evaluated  as  affecting ORD. All  work was  based  on  the  assumption  that 
current  JP-fueled widebody transports would be replaced  with 400 passenger, 10 186  km 
(5500 nmi)  design  range  LH2  transports  operating at current  frequencies  over  the 
existing  route  network  during  the  1990-2000  time  period.  Narrowbody  transports  were 
assumed  to  continue  using JP fuel.  The  following  major  points  represent  the  considered 
inputs  and  judgment of the  participants  in  this  study,  including  the  Chicago 
Department of Aviation  and  subcontractors  United  Air  Lines  and  Air  Products  and 
Chemicals.  Inc. 

A 726 000 kglday (800 tonlday)  liquefaction  capacity  was  found to be  adequate  to 
meet  the 544 300 kglday  (600  tonlday)  aircraft block fuel  demands.  The  liquefaction 
plant  can  operate  efficiently  at 120% rated  capacity  to  accommodate  demand 
variation  due to fleet  growth or fueling  philosophy  that  might  be  applied by 
operating  airlines.  A  storage  capacity of 1 452 000 kg (1600 tons)  was  determined 
adequate  to  meet  variations  in  fuel  demand  and  provide a fuel  supply  in  case of 
normal  system  interruption.  This  compares  with  the  current  total  United  States 
LH2 production  capacity of approximately 98 000 kglday (108 tons/day)  and  the 
largest  existing  storage  facility, 236 000 kg (260 tons), a t   t h e  NASAIKennedy 
Space  Center. 

Several LH2 fuel  distribution  concepts  were  considered.  Dual  fueling (LH2 or JP) 
at main  terminal  gates  serving widebody transports  was  found  to  be  the  most 
desirable: at  ORD,  competitive  airlines  rely  heavily  on  quick  exchange of 
passengers  and  baggage.  The  installation  could be made  without  major  disruption 
to  airport  and  airIine  operations. A concept tha t  would isolate  the  fueling of LH2 
transports  from  those  using JP fuel  would  cause  less  airport  disruption  during 
installation,  but  airline  operations would be  severely  impacted. 



0 A capital  investment of $469  million  (1975  dollars)  would  be  required  to  implement 
the LH2 liquefaction.  storage  and  distribution  system  for  the  dual  fueling  concept 
when  supplied  with  gaseous  hydrogen  (GH2). If LH2  is  delivered  to  the  airport 
storage  facility  from  remote  liquefaction  facilities.  the  capital  investment  for  the 
airport  reliquefaction  plant  would  be  reduced  to  $270  million;  however  the 
increased  price of LH2 delivered to the  airport  (versus  GH2)  must be taken  into 
consideration  when  comparing  capital  costs of liquefaction  and  reliquefaction 
plants.  (Electric power  costs  for  hydrogen  liquefaction are  significant.)  Annual 
costs  to  the  airlines  for  the LH? fuel  were  determined  parametrically  to  include  the 
effects of hydrogen  delivery  state  (LH2  or  GH?).  fueling  concept  (dual  or  separate), 
airplane  fuel  tank  configuration  (internal or external),  and  type of capital 
financing  (private  or  public).  The  study  also  indicated  that  depending  on  the  cost of 
electric  .power,  the  cost of GH2. and  the  financing  method  employed  LH?  costs  to 
the  airlines would .be competitive  within  the  range of JP fuel  costs of 19  to 40dll 
(0.72  to  1.50Wgal).  Capital  investment  and  annual  costs  are  detailed  in  the  concept 
appraisal  section. 

0 A 12-year  implementation  period  would  permit  adequate  planning,  installation  and 
check,out using  advanced  (not  fully  developed)  liquefaction  system  technology.  This 
time  period  would  also  be  compatible  with  transport  development  through 
certification  providing it is preceded  with  adequate  Research  and  Technology 
(R&T) ,  and  an  economical  source of gaseous  hydrogen  is  available.  It  was 
determined  that  over 90% of the widebody  operations  in  the  United  States  could be 
operated on LH2 after an  additional five years on the  assumption  that  two  major 
airports, offering the LH2 fuel  capability,  are  implemented  each of the  five  years. 

0 All  potential  technical  problems  identified  during  the  study  lend  themselves  to 
straight-forward  engineering  solutions: 
1. Changes  to  airline  operating  procedures  would  be  limited  to  the  fueling 

function  (revised  fueling  equipment  and  operating  procedures, as well as 
extensive  ground  crew  training)  and  to  the  passenger  loading  provisions 
necessary  to  handle  the  double  deck  aircraft  configuration. 

2. Installation of the LH2 system at  ORD could  be  accomplished  using  existing 
hardware  design  concepts  and  construction  techniques.  Disruption of airport 
operations  could  be  limited  to  localized  areas  around  the  terminal  proper. 
(This conclusion  does  not  necessarily  apply  to  other  airports  with real estate 
limitations  for  the LH2 system.) 

0 Research and technology  effort is  recommended  in  the following areas: 
1.  Ground  to  airplane  fuel  and  vent  connection  concept  research 
2. Liquefaction  cycle  efficiency  and  control 
3. Vacuum  jacketed  line  failure  sensing  systems  research 
4.  System  engineering  studies of a functional LH2 airport complex to  determine 

technical  and  economic  characteristics  that  would  affect  implementation 
decisions  regarding  the  adoption of LH2 on a system-wide  basis 
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2.0 INTRODUCTION 

National  concern  over  potential  energy  shortages  has  directed  attention  to a broad 
spectrum of energy  users;  toward  conserving  conventional  forms of energy  and 
substituting  unconventional  forms  where  feasible.  Transportation  is a major  energy 
consumer,  most of which is  derived  from  petroleum  products.  Hydrogen is one of several 
potential  alternate  fuel  candidates  for  air  transportation  and  several  studies  have  been 
performed,  focusing  on  the  various  elements of a hydrogen  system.  NASA  has  sponsored 
industry  studies  on  the  production  and  liquefaction of hydrogen  and  on  liquid  hydrogen 
technology  for  subsonic  aircraft.  The  present  study  explores  the  feasibility  and  impact 
on  an  air  terminal of implementing a liquid  hydrogen (LH2) air transportation  system. . 
The  position  this  investigation of user  facilities  and  operations  occupies  in  the  general 
approach  to  the  energy  problem  is  shown  in  figure 1. 

2.1 OBJECTIVES 

The  general objective  was  to  make a preliminary  assessment of the  impact on a i r  
terminals  and  airline  ground  operations of the  use of LH? as a fuel  for  commercial  air 
transports.  This  was accomplished. as  illustrated  in  figure 2, by formulating  concepts 
for the  air  terminal  studied.  based on the  integrated  requirements of the  operating 
airlines.  the  fuel  system  and  the  air  terminal  facility.  The  concepts  thus  formulated 
were  appraised for technical  and  operational  feasibility.  and  economic  impact.  Finally 
R&T  recommendations  were  made  relative  to  areas  considered  to  be  high  risk at current 
levels of technology. 

2.2 SCOPE 

The  study  was  basedon  implementation of an  LH2 air  transportation  system at O'Hare 
International  Airport, Chicago,  Illinois  (ORD) in  the 1990-1995 time  period.  The  current 
widebody fleet  operating  from ORD was  assumed  to  be  replaced by 400-passenger 
10 186  km (5500 nmi)  design  range, LH2 aircraft  operating  over  the  current  route 
network at today's  widebody frequencies. Two airplane  configurations  developed  during 
a previous  study  (ref. 1) were  used.  Principal  characteristics of those  configurations  are 
shown  in  figure 3. 

The  contract  statement of work  stipulated  that a fuel  supply  was  to  be  assnmed 
available at the  airport  boundary,  delivered  either as a gas by pipeline,  or as a liquid by 
tank  truck  or  rail  tank  car.  The  study did not  address  the  production of hydrogen  nor  its 
transmission  to  the  airport  boundary. 

2.3 APPROACH 

A  team  approach  was  utilized  in  order  to  properly  analyze  and  integrate  the  design, 
installation  and  operational  aspects of the  study.  The  team  included two  subcontractors 
who interfaced  with  Contractor  team  members  in  their areas of expertise.  Air  Products 
and  Chemicals,  Inc.,  well-known  in the field of hydrogen  cryogenics,  contributed  to  the 
design  and  costing of the  fuel  system.  United  Air  Lines,  the  largest  operator of 
widebody aircraft at ORD, contributed  to  the  design of ground  operational  equipment 
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and  the  evaluation of ground  operations.  The  Chicago  Department of Aviation  (not 
under  contract)  provided  information  on  the  management  and  operation of O'Hare, 
planning  data,  and a critique of conceptual  arrangements  developed  during  the  study. 

2.3.1 STUDY FRAMEWORK 

The  study  was  conducted as shown  in  figure 4. Fifteen  domestic  airports  were  identified 
. as candidates  for  study  from  considerable  data  developed  on  widebody  operations,  traffic 
characteristics  and  other  factors  relating  to  their  operating  environments.  The NASA 
designated ORD as the  airport  to  be  studied.  The  airport  configuration,  as  shown  in 
figure 5,  was  based  on  Composite  Utility  Drawings  furnished  by  the  Chicago 
Department of Aviation.  Existing  facilities  are  shown  solid,  with  planned  additions  to 
runways  and  taxiways as dashed  lines. 

Basic  ground  rules  were  established  from  considerations of safety  and  airline  operating 
objectives. These  strongly  influenced  the  requirements  upon  which  the  air  terminal 
concepts  were  formulated.  They are listed  and  discussed  in  section 2.3.2. 

Ancillary Studies 

LH2 delivery 
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External tank Baseline Concept 
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Figure 4. -Principal Study Work Elements 
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After  establishing  ground  rules  and  requirements, a baseline air terminal  concept  was 
developed  which  utilized  existing  terminal  facilities at ORD for  both  LH2-fueled 
airplanes  and  narrow body, JP-fueled  aircraft.  This  concept,  which  was  investigated  in 
depth,  retained  normal  airline  flexibility of operations.  It  was  based  on  gaseous 
hydrogen  delivery  to  the  airport,  a  fleet of internal  tank LH2 airplanes,  and  the  route 
structure  and  fueling  characteristics of a  mature  system. 

An  alternate  concept,  based on separation of JP and LH2 fueling  gates,  was  developed 
to evaluate  the  impact.of  that  constraint on facilities  and  operations.  The  two  concepts 
were  carried  through  technical,   operational  and  economic  appraisals,   and 
recommendations  were  made  for  further  research  and  technology  efforts.  The 
recommendations  included  those  desired  to  make  the L'HP airplanes  more  compatible 
with  the  air  terminal  concepts. 

Several  ancillary  studies  were  conducted  to  determine  the  impact of changes  to  major 
input  factors  on  the  baseline  concept.  These  included  liquid  hydrogen  delivery to the 
airport  rather  than GH2 delivery,  external  tank  transport  configuration  in  place of the 
internal  tank  configuration,  and  two  variations  in  fueling  philosophy.  The  final 
ancillary  study  postulated  a  pattern of LH2 air  transportation  network  growth  and  some 
gross  estimates of capital  investment  impact on major  domestic  air  terminals. 

Technical,  operational  and economic appraisals  were  made of the  baseline  and  the 
alternate  concept.  From  these  appraisals,  recommendations  for  changes  to  the 
internal-tank  airplane  configuration  were  identified  to  make  it  more  compatible  with 
the air terminal  concepts.  Also,  areas were, identified  from  these  appraisals,  which 
would benefit  from  further  study, or in  which  special  research  and  technology is 
necessary  to  ensure  acceptable  standards of safety,  reliability  and/or  operational 
flexibility. 

This  document is structured  to follow the  study flow as  depicted  in  figure 4. The 
characteristics of ORD facilities,  operations  and  traffic  are  discussed  in  section 4. 
Development of the  baseline  and  alternate  concepts  is  contained  in  sections 5 and 6, 
respectively.  Ancillary  studies  are covered in  section 7. Appraisal  results  are  provided 
in  section 8, with  recomm.endations for changes  to   the  internal   tank  a i rplane 
configuration  in  section 9. Recommendations  for  further  study  and/or  development  are 
contained  in  section 10. 

2.3.2 BASIC STUDY  GROUND  RULES 

Ground  rules,  adopted  from  considerations of safety  and  airline  operating  practices,  had 
a  major  impact on all  aspects of the  study. 

Safety Considerations 

General  safety  considerations  are  discussed below; however,  specific  applications of 
these  principles  are  to  be  found  throughout  this  document. 
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The  properties of hydrogen  that  make it  markedly  different  from  kerosene  are  its low 
boiling  point 20.3" K (-423" F) and  the low energy  required  to  ignite  hydrogenlair 
mixtures  (below  visibility  level of a spark).  The low boiling  point  makes  contamination 
control and  pressure  relief  provisions  major  goals  in  the  design of safe  hydrogen 
systems.  The low ignition  energy  dictates  particular  care  in  insuring  that  hydrogen  can 
be vented  or  leaked  only  to  controlled  areas. 

At  the  extremely low energies for hydrogen-air  ignition  (approximately 0.02 millijoules 
as  compared  to 0.2 millijoules for kerosene),  it  must  be  assumed  that  the  potential for 
igniting  a  hydrogen  leak is always  present.  The  elimination of ignition  sources is not 
practical,  therefore  a  hydrogen  system  must  be-designed  such  that  the  potential  for a 
leak  in  a  critical  area  is  minimized,  and  fires  from  small  leaks do not  jeopardize 
equipment  or  personnel  safety.  This  design  requirement  has  been  successfully  met by 
the  chemical  industry  .and  in  the  surface  transportation of hydrogen.  There  is no 
technical  reason  why  the  requirement  cannot be met  in  the  design  and  operation of 
aircraft  and  associated  ground  systems. 

Both  burning  and  detonation  can be initiated  over  a wide range of hydrogen-air  mixture 
ratios.  The  flammability  range is 4 to 75 mole  (volume)  percent  hydrogen  in  air;  the 
detonation  limit is 17 to 60 mole percent  hydrogen  in  air.  Experience  shows  that 
hydrogen-air  mixtures  confined  in  a closed area  can be detonated;  however  unconfined 
hydrogen-air  mixtures  are  likely  to  burn  rapidly.  The  design of hydrogen  systems  must 
insure  that  hydrogen-air  mixtures  cannot  be  formed  or  remain  undetected  in a closed 
area. 

The  flame  produced by hydrogen  burning  in  air is relatively  nonluminous  and  its low 
density  and  high  liquid  volatility  results  in  a  rapid  dissipation of hydrogen  spills.  These 
properties  lower  the  damage  potential of a  major  liquid  spill  such as  that  resulting  from 
an  airplane  crash.  Hydrogen  tank  rupture  experience  obtained  during  development of 
the  Saturn  Launch  Vehicle  indicates  that  damage from a tank  rupture is considerably 
less than  that  resulting  from  accidents  with  equivalent  quantities of conventional  fuels. 
Danger  to  personnel  outside  a  hydrogen  spill  footprint is low because of the low 
radiative  heat  transfer  from  the  fire. 

When  liquid  hydrogen is contained  in  a closed system,  the  system  pressure  will  rise  due 
to vaporization of the  liquid, followed by super  heating of the  vapor.  This  pressure  rise 
is limited  only by the  pressure-volume-temperature  (PVT)  characteristics of hydrogen, 
the  ambient  temperature,  and/or  the  strength  or  safety  relief  capability of the  system. 
Excessive  pressure  buildup  in  any  part of a hydrogen  system  is  an  extreme  safety 
hazard  to  personnel  and  equipment.  This  condition  is  avoided  by  the  use of pressure 
relief  devices at all  points  where  liquid  or cold hydrogen  can  be  trapped  between 
closures. 
The  primary  hazards of fire,  explosion  and  cryogenic  temperatures  must  be  minimized 
by incorporating  in  the  air  terminal  fuel  system  the  proven  and  effective  design 
features  developed  during  the  highly  successful  space  programs.  Lessons  learned  from 
those  programs  are  particularly  applicable  to  the  liquefaction  plant  and  to  much of the 
distribution  system  considered  in  this  study.  Continuous  daily  airport LH2 operations, 
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however,  will  involve  situations  that  did  not  occur  in  the  infrequent,  highly-controlled 
space  program  operations.  Particular  attention  must  be  placed  on  safety  in  those  areas 
where  the  airplane  and LH2 system  interface. Of these,  the  most  critical  is  airplane 
fueling  which is conducted  in  an  environment of ground  vehicles  and  personnel 
performing  many  diverse  functions.  Operating  procedures  and  training  programs  must 
be tailored  to  personnel  who,  in  most  cases,  have a very  limited  technical  and 
experience  background  in  cryogenics. 

During  design of the LH2 facility  and  distribution  system  the  following  safety 
considerations  must  receive  special  attention: 

Separation of the LH2 facilities  from  roads,  buildings,  runways,  etc 

Adequate  ventilation  for  enclosed  areas  to  el iminate  the  probabili ty of 
accumulation of combustible  mixtures 

Automated  malfunction  sensing  and  system  shutdown  controls  with  manual  control 
backup 

Ignition  sources 

Provisions  to  confine/control  large LH2 spills  in  critical  areas 

An acceptable  level of safety  in  operation of the  airport  liquid  hydrogen  fuel  system  can 
be achieved by applying  space  program  experience,  practical  safety  standards  to  system 
design,  and to the  development of rigid  operating  procedures. 

Airline Operations 

The  following  considerations  are  important  to  efficient  airline  operations a t  ORD: 

0 Operating  procedures a t  ORD which  degrade  airline  economics or  cause  undue 
passenger  inconvenience  are  unacceptable.  Ground  time  is  unproductive  to  an 
operating  airline  and  must be held  to a minimum.  This  is  especially  critical at 
ORD,  where  widebodies fly relatively  short  stage  lengths  and  are  part of a complex 
scheduling  network. 

a The  consolidation of an  airline’s  operations at an  air   terminal is important. 
Dispersed  operations  result  in  inefficient  use of ground  personnel  and  equipment, 
and  tend  to  decrease  that  airline’s  interconnect  traffic.  A  large  majority of the ORD 
passenger  traffic  is  made  up of the  “through  passenger”  type.  Many of those 
passengers  change  flights at ORD. The  major  trunk  carriers  tailor  their  service 
individually  to  ensure  that  passengers  will  continue on their  airline.  Any  major 
physical  separation of portions of their  fleet  would  disrupt  this  competitive 
situation. 
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0 During  peak  passengerltransport  traffic  periods,  gate  space at  ORD i s  at a 
premium,  and no  major  expansion  has  been  agreed  upon.  The  makeup of the 
parked  fleet  varies  considerably  during  the  day. This has forced the  airlines  to 
equip a majority of their  gates  to  handle  nearly  every  model  in  their  fleet. 
Allocation of gates  to specific  models  would disrupt  their  ability  to follow this 
concept. 

To  attract  the  interest of airlines  that  operate widebody-type aircraft,  the  operating 
features of new  concepts  such as LH2 fuel,  must  be  responsive  to  the  above  three 
characteristics.  They  basically  dictate  that  the LH2 fuel  concept  should  permit 
operations at a majority of existing  gates  available  to  each  affected  airline  and  should 
serve  both  LHz-  and  JP-fueled  aircraft. 

In addition,  while  there  is  less  penalty  in  an LH2 airplane, as compared  to a JP-fueled 
airplane,  to  operate  with  excess  fuel  aboard,  it would  be quite  unlikely  that  any  airline 
would adopt LH2 based  on  operations  from  only  one  airport.  Rather  the  airline  (or 
several  airlines) would adopt LH2 for a significant  portion of their  fleet  and  operate 
from several  airports  whose  traffic  adapts  to  the  capacity of the  particular  airport 
design.  The LH2 system at any  airport  such as ORD, should  therefore  be  applicable  to 
mature  system  type  operations. 

The above  considerations  resulted  in two basic  ground  rules  that  had a significant  effect 
on the  course of the  study. Those  were: 

0 Prime  consideration  to  be  given  to  a  concept  that  permits  both JP- and LH2-fueled 
aircraft  to  operate  from  the  same  gates. 

0 LH2 system  provisions a t  ORD  to  be  based on a mature  system  wherein  the  current 
route  structure  and  frequencies  are  assumed  and  with a similar  fueling  philosophy, 

. i.e.,  fuel  to be loaded as needed  for the specific  mission  (An  investigation of fuel 
requirements at ORD during  system  introduction  and  growth  is  discussed  in 
section 7.5.) 





3.0 ABBREVIATIONS AND SYMBOLS 

ANC 

APU 

AR 

ASM 

ATA 

ATC 

ATL 

Awet 

b 

BPR 

BTU 

cfm 
- 
C 

CD 

CL 

CRES 

CW 

DEN 

DFW 

DOC 

DOT 

ECS 

FAR 

f t  

Anchorage  International  Airport,  Anchorage,  Alaska 

auxiliary  power  unit 

aspect  ratio 

available  seat  miles 

Air  Transport  Association 

air  traffic  control 

The  William B. Hartsfield  International  Airport,  Atlanta,  Georgia 

airplane  wetted  area 

wing  span 

bypass  ratio 

British  Thermal  Unit 

cubic  feet  per  minute 

mean  aerodynamic  wing  chord 

drag  coefficient 

lift  coefficient 

corrosion  resistant  steel 

mean  aerodynamic  wing  chord 

Stapleton  International  Airport,  Denver,  Colorado 

Dallas/Fort  Worth  International  Airport,  Dallas/Ft.  Worth,  Texas 

direct  operating  cost 

Department of Transportation 

environmental  control  system 

Federal  Aviation  Regulation 

foot, feet 
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net  thrust  

gaseous  hydrogen 

gaseous  nitrogen 

hydrogen 

John Rodgers/Honolulu  International  Airport,  Honolulu,  Hawaii 

H2 

HNL 

hP 

HX 

horsepower 

heat  exchanger 

John  Foster  Dulles  International  Airport,  Washington, D.C. IAD 

IATA International  Air  Transport  Association 

inside  diameter ID 

joules 

John F. Kennedy  International  Airport, New York, New  York 

J 

JFK 

JP  

k 

K 

jet  fuel 

kilo (lo3) 

Kelvin 

kilogram 

km kilometer 

kw 
1 
LAX 

kilowatt 
liters 
Los Angeles  International  Airport, Los Angeles,  Calif. 

LD GR landing  gear 

LF passenger  load  factor 

liquid  hydrogen 

L/D lift  to  drag  ratio;  ratio of engine  inlet  length  to  compressor  diameter; 
ratio of heat  exchanger  length  to  diameter 

lb pound 

14 



M 

M 

m 

MAX 

MCR 

MIA 

MLG 

NAS 

nmi 

NPV 

OD 

OEW 

ORD 

Pa 

PL 

PPm 

R 

R&T 

ROI 

s, 

SEA 

sec 

SFC 

SF0 

Mach  number 

mega (lo6) 

meter 

maximum 

cruise Mach number 

Miami  International  Airport,  Miami,  Florida 

main  landing  gear 

National  Aerospace  Standard 

nautical  mile 

net  present  value 

outside  diameter 

operational  empty  weight 

O’Hare  International  Airport,  Chicago,  Illinois 

pascals 

payload 

parts  per  million 

Rankine 

research  and  technology 

return  on  investment 

wing  area 

Seattle-Tacoma  International  Airport,  Seattle,  Wash. 

second 

specific  fuel  consumption 

San  Francisco,  California 
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SOB 

SPS 

TOFL 

TOGW 

TPHP 

V 

V -J 

WTD 

WIS 

AP 

A 

side of body 

secondary  power  system 

takeoff  field length 

takeoff  gross  weight 

typical  peak  hour  passenger 

velocity 

vacuum  jacketed 

weighted 

airplane  wing  loading 

pressure loss 

wing  sweep 
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4.0 O’HARE INTERNATIONAL AIRPORT 

With  the  introduction of the  jet  age  in  1959. Midway Airport  would no longer suffice 
and  development of ORD began  in  earnest. By 1963  all  airline  traffic  had  been moved to 
ORD. located  35  km  (22  miles)  northwest of the Chicago Loop. 

The  airport is owned by the  City of Chicago  and is operated  by  its  Department of 
Aviation.  The  Department  is  headed by the  Commissioner of Aviation  who  reports 
directly to the  Mayor.  The  airport,  including  passenger  terminals  and  customs  facilities, 
is  available for use 24 hours a day,  every  day of the  year.  Aircraft  operations,  controlled 
by the world’s busiest  FAA  Control  Tower,  grew  from  510 000 in  1965 to 613 000 in 
1975: passengers  (arriving  plus  departing)  increased  from  21  million  to  37  million  in 
the  same  period. 

4.1 EXISTING FACILITY 

Starting  with  the  1200-acre  area of Douglas-Orchard  Airport,  the  city  has  continued 
acquiring  adjacent  properties.  The  present field boundaries, (fig. 61 extend  about  6.5 k m  
(4.0miles)  north-south by 5.3 km  (3.3  miles) east-west and  enclose  an  area of about 
28  329 000 m2 (7000 acres).  This is considerably  larger  than  other  “large  hub”  domestic 
airports  such  as New York’s Kennedy  Airport a t  21  044 400 m2  (5200  acres)  and Los 
Angeles  .International  Airport  at 12 950 400 rn2 (3200 acres).  The  airport  area is 
virtually  surrounded by trunk  line  railroads  and IS the focus of a  well  developed 
highway  network. 

The ORD runway  system  includes  three  pairs of widely-spaced  parallel  runways,  as 
shown  in  figure  6.  According  to  reference  2,  these  runways  are  adequate for an   a i r  
traffic  activity of 500 000 operations  per  year.  The  1975  traffic  count  was  613 000 
operations  and  landing  delays  at ORD are  frequent. 

As  shown  in  figure  7,  passenger  accommodations  include  three  terminal  buildings  and  a 
circular  restaurant  building  from  which  concourses  lead  to  the  airplane  loading 
positions.  Terminal no. 1 on the  west  side,  leading to Concourse B-C, accommodates  all 
international  passenger  traffic.  Terminals  no. 2 and  3  and  Concourses D, E-F, G ,  and 
H-K support  the  domestic  traffic.  The  international  and  domestic  concourses  provide 70 
loading  gates  which  are  exclusively  leased by the  airlines. Most of the  gates  are  fitted 
with  passenger  loading  bridges.  A  1967  study  (ref. 3) found  this  terminal  “over-utilized” 
with a calculated  space  factor of 19.7 rn2 (212  ft2)  per  peak-hour  passenger.  These 
facilities  handled 37 000 000 passengers  (arriving  and  departing)  in  1975. 

An  area  for  airplane  maintenance  is  on  airport  property  about 1.6 km (1 mile) 
northwest of the  passenger  terminal.  Hangars  for widebody aircraft  are  provided by 
United  (two  747’s),  American  (one  747),  Delta  (one L-10111, Eastern  (one  L-loll) ,   and 
Trans World Airlines  (L-1011  nose  only). 

An  area of about  607  050  m2  (150  acres)  serves  the  air  cargo  traffic at ORD, which  in 
1972  handled  almost  600 000 000 kg (660 000 tons).  United,  Flying  Tiger,  Trans  World, 
Continental  and  American  Airlines  maintain  individual  cargo  terminals.  Smaller  lines 
lease  space  in  the  two  consolidated  cargo  buildings.  Air  freight  forwarders  such as 
Emery,  REA,  Airborne, WTC, and  Shulman  are  also  represented  here. 
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Figure 6. -Current  O’Hare  Facilities 



F&ure 7. -Existing Passenger Terminal 

A  fuel  tank  farm,  designed  to  provide  a 3 day  supply,  is  located  about  one  km NW of the 
maintenance  area. An additional 1 day  supply  is  provided  in  underground  satellite 
tanks  adjacent  to  the  passenger  loading  aprons. A fuel  distribution  system of 
underground  piping  serves  all  but  a few passenger  gates  and  the  Flying  Tiger  cargo 
terminal.  The  remaining  passenger  gates,  cargo  terminals,  and  maintenance  area  are 
served by tank  trucks.  The  entire  fueling  system is operated by a  private  contractor on 
behalf of the  using  airlines. 

4.2 PLANNED  DEVELOPMENT 

Plans for  improvement  to  the  runway  system  are  shown  in  figure 5. They  include 
lengthening  four  runways: 4R-22L, 9R-27L, 14R-32L and 14L-32R; replacing  two 
runways  which  presently crowd the  existing  passenger  terminal: 4L-22R and 9L-27R; 
and  adding  two  close  parallel  runways  to  be  designated 4L-22R and 14L-32R (the 
runways  currently  bearing  those  designations  will become  “C”  for center  runways). 
These  improvements  will  more  adequately  serve  the  changing  fleet  mix  (growth  in  size 
of airplane)  as well as  marginally  increase  the  airport  operations  capacity. 

Future  plans  call for alleviating  congestion at the  terminal  gates.  The  problem  will be 
attacked on  two  fronts:  move the  international  traffic  out of Terminal 1 (Concourse B-C) 
to some  other  location  (not  firmly  selected);  then  rebuild  the  existing  terminal  to 
provide  a  significant  increase  in  the  number of gates  available  for  domestic  passenger 
traffic  (perhaps  up  to 110). 
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The  existing  cargo  terminal  area  is  insufficient  to  serve  the  forecast  growth  in  air 
cargo. Two additional  areas  within  the  airport  boundaries,  south  and  west of the 
passenger  terminal,  have  been  designated for cargo  terminal  expansion.  Together,  these 
expansion  areas  total  over 2 832 900 m2 (700 acres). 

Maintenance  area  requirements  have  been  forecast  to  increase by 50% during  the 
planning  period.  The  area at   the  far  north  end of the  airport,  lying  between  runway 
ends  14L  and  22R,  is  presently  allocated  to  fulfill  this  future  need. 

4.3 O’HARE  WIDEBODY  TRAFFIC  AND  REFUELING  CHARACTERISTICS 

The  characteristics of current widebody  traffic a t  ORD  were  analyzed  to  provide  a 
baseline  from  which  liquid  hydrogen  fuel  requirements  could  be  estimated.  The  number 
of daily  flights,  the  time-of-day  variation  in  departures  and  the  average  fuel  loaded  per 
flight  were  important  factors  in  determining  the  size of the  hydrogen  liquefaction  plant, 
storage  vessels  and  distribution  lines. 

The following paragraphs  present  the  analysis  method  and  results  obtained  in  terms of 
J P  fuel  requirements for the  current widebody  fleet a t  ORD. Section 4.5 converts  these 
data  into LH2 fuel  requirements for an  equal sized  fleet of 400 passengers,  10 186 km 
(5500 nmi),  hydrogen-fueled  airplanes  operating  over  the  same  route  network  and a t   the  
same  flight  frequencies. 

4.3.1 WIDEBODY  TRAFFIC 

Widebody (747,  DC-10,  L-1011)  flights  through  ORD  (ref.  4)  are  tabulated  in  appendix 
A. These  data  indlude  airplane  type,  airline,  origin  and  destination  airports,  flight 
numbers,  and  arrival  and  departure  times.  The  flights, which  represent  the  total 
widebody  passenger  transport  traffic,  are  shown  graphically  in  figure 8. They  are 
identified by incoming  and  departing  flight  numbers  and by airline.  Length of the  line 
denotes  ground  time.  Other  than  those  that  overnight a t  ORD, a  majority of the 
airplanes  are on the  ground  one  hour  or  less,  indicating  the  efforts by airlines  to 
maintain  high  utilization by keeping  ground  times to a  minimum.  There  are 22 daily 
747 flights, 17 L-1011  flights  and 73 DC-10  flights.  (NOTE: A few flights,  which  are 
scheduled  less than  daily,  are  considered  as  daily  flights  to  represent  the  “busiest  day” 
of the  week.) 

The  numbers of widebody  aircraft on the  ground  at  ORD during  any  ho lr of the  day  are 
shown  in  figure 9. A general  high  level of gate occupancy  exists  between  0500-2100 
hours,  with  moderate  peaking  during  early  morning  and  late  afternoon  hours.  This 
pattern of traffic  is  not  typical of major  coastal  airports, wit,h a  large  percentage of 
widebody  flights  devoted to  transcontinental  and  intercontinental  traffic.  Maximum 
gate  demand  at ORD  occurs  between 4-6 PM,  when  20  widebody  aircraft  belonging  to  12 
different  airlines  are at  the  airport. 

4.3.2 FUELING  CHARACTERISTICS 

Hourly  hydrant  demand,  based on each of the  112  aircraft of figure 8 requiring  fuel,  is 
shown in  figure  10,  with  details  provided  in  appendix A. I t  was  assumed  that  fueling 
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would be  accomplished  reasonably close to  takeoff  to  minimize  fuel  depletion  due  to 
boiloff. Aircraft  on  the  ground  for  several  hours  were  assumed  to be refueled  during  the 
last  full  hour;  aircraft  with  short  ground  time  (approximately 1 hour)  spanning  2 clock 
hours  were  assigned a refueling  hydrant  during  the  earlier of the  2 clock hours.  The 
resulting  hydrant  demand  peaks  between  5-6  PM,  with a requirement  for  simultaneous 
fueling of 12  aircraft.  Other  high  demand  times  occur at 9-10 AM, 4-5  PM  and  7-8 PM. 

Normal  airline  fueling  practice  is  to  carry  only  enough  fuel  for a flight,  plus  reserves. 
The  penalties  for  carrying  excess  fuel  are  shown  in  figure 11 for JP fueled  and LH2 
fueled  10  186  km (5500 nmi)  design  range  airplanes.  For  example, a 1000  nmi  mission 
flown with  full  tanks  results  in a 40% fuel-burned  penalty  for  the JP airplane  and  about 
an  18% penalty for the LH2 airplane.  These  penalties  have a significant  impact  on 
operating  economics  and  are  avoided  except  when  tempered  by  large  differences  in local 
fuel  prices,  or  fuel  availability.  It  was  assumed  that  the LH2 airplanes  in  this  study 
were  operating  in  a  mature  transportation  system,  and  that  fuel  loadings  were 
proportional  to  length of flight.  (The  “Full  tank”  operatiw  philosophy  is  used  in 
section 7.5, Air  Transport  System  Impact,  during  the  introduction  and  early  period  in 
system  growth.) 

To determine  current  normal  fueling  practices at ORD,  fueling  data  were  obtained  from 
six  major  airlines  operating  widebodies  through ORD. The  data,  shown  in  appendix A, 
were  received  in  varying  degrees of detail,  and  represented  about 83% of the  total  ORD 
widebody passenger  flights.  Fuel  loadings  for  specific  flight  numbers,  obtained  from CO,  
TW and  UA,  accounted for all  but  eight  flights  operated by those  airlines as listed  in 
reference 4. It  was  assumed  that  those  eight  flights did not  take on fuel a t  ORD. 

These  data  were  extrapolated  to  estimate  fuel  loadings of the  other 17% of widebody 
operations  out of ORD. Overall  results  are  summarized  in figuFe 12  which  shows  the 
range of fuel  loadings  and  averages for the  three  types of aircraft.  A  weighted  composite 
fleet  average  loading is also  shown.  Maximum  loadings of 113  550  1  (30 000 gal) for the 
747 are for Chicago-Honolulu  (HNL)  flights,  the  maximum  segment  length of any 
widebody flight  out of ORD.  The “63% max-international”  label  in  figure 12 applies  to 
the  HNL  flights,  which  require  more  fuel  than  other  truly  international  flights,  such as 
ORD-FRA,  ORD-LHR,  etc.  As  would  be  expected, the  mid-continent,   hub-type 
operations a t  ORD resulted  in  average  fuel  loadings  that  were  relatively low-23% of 
capacity  for  the  composite  fleet. 

During  August  1975  there  was  an  average of only  two  widebody  freighter  flights  per 
day  from ORD. These  were  not  included  in  the  above  data  because  they  would  not  have 
a measurable  impact  on  fuel  requirements,  (i.e. departures  at  off-peak  hours, 
short-flight  segments,  fueled at the  separate  cargo  facility.) 

Delay  data  (appendix A) for ORD operations-1972  and  1973-were  received  from  the 
CAB. Average  inflight  delays  during  that  period  were  12.4  min.  Ground  taxi  delays 
averaged 9.8 min.  The  effects of these  factors  on  fuel  demand  were  taken  into 
consideration  in  sizing  the LH2 system. 
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In  summary,  Chicago-O'Hare  is  the world's busiest  airport. It averages  840  scheduled 
airline  departures  per  day, of which  only  112 (13%) are  widebody  aircraft.  This  ratio  is 
typical of inland  hub  airports, which  also  serve  relatively  short  route  structures  and do 
not  experience as severe  peaking  periods  during  the  day as major  coastal  airports.  The 
route  system  served by ORD requires  an  average JP fuel  onload of only 23%  of widebody 
airplane  capacity,  which  translates  into  2  914  450  l(770 000 gal)  per  day  for  that 
portion of the  total  traffic.  There  are  only  20 of these  aircraft  at  the  airport  during  the 
peak  period of 4- 6  PM, of which  12 require  simultaneous  fueling  between  5-6 PM. 

4.4 BASELINE  AIRPLANE  CHARACTERISTICS 

The  configuration  selected to  be the  baseline  study  airplane  was  the  400-passenger, 
Mach 0:85, internal  tank  configuration of reference 1. A general  arrangement  (figure 55 
of ref. 1) is  reproduced as  figure  13.  This  configuration  has a design  maximum  gross 
weight of 177 675  kg  (391 700 lb).  a  maximum  payload of 39 917 kg (88 000 lb)  and  a 
design  range of 10  186  km (5500 nmi).  The  operating  empty  weight  is  109  817  kg 
(242  100  lb)  and  has a fuel  capacity of 27 942 kg  (61 600 lb).  The  general  size  is  similar 
to a  current 747;  however,  a  double-deck  passenger  compartment is contained  between 
large  liquid  hydrogen  tanks  in  the  fore  and  aft  fuselage. 

Fuel  consumption  calculations  to  estimate  the  fleet  fuel  requirements of section  4.5 
were  based  on the  aerodynamic  data  and  fuel  consumption  rates  in  appendix D of 
reference 1. To accurately  calculate boiloff on the  ground  and  in  the  air,  the  heat 
transfer  rate  through  the  insulation  and  the LH2 wetted  area  is  required,  as  a  function 
of fuel  remaining  in  the  tank.  Neither  fuel  tank  characteristic  was  included  in 
reference  1.  hence  both  were  calculated. 

4.4.1 FUEL TANK CHARACTERISTICS 

Reference 1 specified the  insulation used in  the  baseline  (internal  tank) LH2 airplane 
as  0.15 m  (six  inches) of ROHACELL 415  foam.  This  variety of insulation  has a 
specified  conduction rate of 3.1 x watts/cm-OK (0.018  Btuhr-ft-OF)  which  is  equal  to 
54.8  w/m2  (17.4 Btuhr-ft2)  assuming  standard  day  temperature  and 6 inches of foam. 
A f o r w a r d   t a n k   b o i l o f f   r a t e . o f  1.0 kgfminute   (2 .2   lb fminute)  a t  f u l l  
c a p a c i t y  is f u r t h e r   a s s u m e d .   U s i n g , a   c a l c u l a t e d  LH2 wet ted  area of 
131 m2 (1410 f t 2 )   t h e   c o n d u c t i o n  rate is: 

Q =  
1.0  kg/min  (2.2  lb/min)x(60  min/hr)x221  watt-hrs/kg  (190  Btu/lb) 

131 m2 (1410 ft2) 

= 56.1  w/m2  (17.8  Btu/hr-ft2) 
which  is   an  excellent  correlation. A heat   t ransfer   coeff ic ient  of 5 5 . 5  w/m2 
(17.5  Btu/hr-ft2)  was  used  in  all boiloff calculations. 

The  variation of liquid  wetted  area  with  the  amount of fuel  remaining  in  the  tank  was 
computed  using  tank  dimensions  measured  from  drawings  in  reference  1,  and 
integration of the volumes and  wetted  areas for  each  tank.  Example  curves of wetted 
area  versus  volume  are  shown  in  figure  14. 
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4.4.2 AIRCRAFT  INSULATION  EFFECTS 

Baseline  aircraft  insulation  requirements  were  also  developed for a  balanced  condition 
maintained  between LHg vaporization  rate  and  fuel flow to  the  aircraft  engines.  This 
would  apply  in  case  tank  venting  during  flight  was  unacceptable. 

As  shown  in  figure  15,  the  tank  heat  leak,  hence  insulation  requirement, for the 
forward  tank  would  be  approximately  31.5  w/m2  (10  Btulhr ft2). The  aft  tank would 
have  a  heat  leak  requirement of 30.0  w/m2 (9 Btu/hr ft2). This  reduction  in  aircraft  heat 
leak  results  in  a 23 216 kglday (30 tonlday)  reduction  in LHg requirements for the 
widebody  fleet.  Although  these  reduced  tank  heat  leak  values  were  not  used  in  the 
present  study,  they  should be evaluated  against  the  corresponding  weight  and  'volume 
penalties'in  future  studies. 

An aircraft  tank  heat  leak of 55.2  w/m2  (17.5  Btu/hr ft2) was  used for all  subsequent 
analyses  in  this  study. 
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Figure 15.-Pressure History-internal Tank  Configuration 

4.5 LH2 FLEET  FUEL  REQUIREMENTS 

To determine  the block fuel  required  and  the  amount of GH2 vented  into  the  airport 
liquefaction  system,  each of the 112 airplanes  per  day  was  assigned a simulated 
mission,  as  shown  in  figure 16, based  on  the  various  stage  lengths  in  the  current 
widebody route  network.  The  amount of fuel  burned  and  free-vented  was  obtained  for 
two cases:  Case 1, wherein  just  enough  fuel  to  complete  the  mission,  plus  reserves,  was 
loaded; and  Case 2, wherein  the  tanks  were  topped off at ORD. The block fuel  required 
for each  simulated  mission  was  obtained  using  performance  data  from  Appendix D, 
reference 1. The  fuel  consumed  and  vented  during  each  flight  was  determined, as was 
the  fuel  remaining at the  end of each  mission. 
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A detailed  discussion of total LH2 system  requirements,  that  is,  airplane block fuel, 
airplane  ground boiloff losses  and  airport LH2 system  losses, is contained  in  section  5.1. 
The  airplane  total block fuel for the  112  simulation  missions  was found. to be: 

LH2 BASELINE  AIRPLANE BLOCK FUEL-ORD 

Case 1.  Minimum LHz loaded for each 
mission - kglday  (tons/day)  545 000 (600) 

Case 2. Tanks topped off for  each 
mission - kglday  (tonslday)  590 000 (650) 

30 

Case 1 was  used  to  approximate  the  fuel  required for a mature  system  type  operation. 
Case 2 was  used  in  calculating  fuel  requirements  during  system  introduction  and 
growth,  which  is  discussed  in  section 7.5. 



5.0 BASELINE CONCEPT 

The  baseline  concept  assumes  delivery of gaseous  hydrogen (GH2) via a pipeline  to a 
liquefaction  plant at the  airport  and  assumes  the  internal  tank  aircraft  configuration. 
Development of the  baseline  was  directed  toward  a  system  that  would  have  the.  least 
impact  on  air  terminal  facilities  and  airline  operations.  A  key  item  toward  minimizing 
the  impact  resulting  from  the  introduction of LH2  into  airline  operations  that  also 
included JP is co-location of the two  fuels and associated  aircraft.  Therefore,  the 
baseline  concept  assumes  that LH2 and  Jet-A  are  compatible  and  the  fuels,  aircraft,  and 
associated  facilities  can  be  co-located.  Figure 17 is  a  simplified  schematic of the  baseline 
concept. 

Two key  fuel-system  related  objectives  were  established  for  the  development of the 
baseline  which  also  were  used  in  the  development of the  alternate concept.  These are: 

1. Airport LH2 requirements  must be  satisfied  after: 
a.  A  single  failure  in  the  liquefaction,  storage,  and/or  distribution  systems 
b. Airport  downtime  due  to  weather,  strikes,  etc. 
c. Aircraft  accident  or  disability 

2. No uncontrolled  venting of hydrogen at  the  airport 

These  objectives  were  pursued  through  evaluation of several  approaches  to  the  storage, 
distribution,  and  venting of hydrogen.  These  approaches  are  outlined  in  figure 18 and 
discussed  in  section 5.2. 

5.1 LH2 SYSTEM  REQUIREMENTS 

Analyses of widebody  traffic  show that  the LH2 distribution  system  must be  capable of 
simultaneously  fueling 12 airplanes  during  the  peak  traffic period a t  ORD. Therefore,  to 
satisfy  current  widebody  aircraft  schedules,  the  main  distribution  system  must be 
capable of handling  an LH2 flow of 226  796 kg (500 000 lb)  per  hour.  A  limiting  design 
condition  for  handling  the GH2 vented  from  the  aircraft  was  not  obvious,  however,  it  is 
desirable  to  limit  tank  blowdown  to  approximately 4 min.  to  maintain  current 
through-stop  airplane  ground  time.  Assuming  that  the  tanks of 12 widebody aircraft  are 
simultaneously  depressurized,  the  vent flow would  be  approximately 56 699 kg  
(125 000 lb)  per  hour.  Approaches  to  handling  aircraft  and  ground  system  vent  gases  are 
discussed  in  section 5.2.1. 

The ORD Airport  and  fleet  fuel  requirements  data  presented  in  section 4.5 were  used  to 
size  the  liquefaction,  storage,  and  distribution  systems.  An  analysis of aircraft 
requirements  and  ground  system  1osses.resulted  in a hydrogen  liquefaction  requirement 
of 725  748 kg (800 tons)  per  day.  The  allocation of this  hydrogen  is  shown  in  table 1. 
These  data  were developed as described  in  sections 5.1.1,  5.1.2, and 5.1.3. 
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Table I.-LH2  Ground  System"H2  Allocation 

Loaded on  aircraft 

Block fuel 
Blowdown reserve 
Vent-loss make-up 
Ullage  make-up 
Tank cooldown (incl. maint.) 

Ground system  losses 

Cooldown-connect 
Delivery  lines 
Storage farm 

Demand  variations 

Operation peaks 

Total  LH2 

kg/day (tons/day) 
sub-totals 

544 31 1 (600) 
34 473 ( 38) 
28  123 ( 31) 
12701 ( 14) 
5 442 ( 6) 

2 722 ( 3) 
9072 ( 10) 
7 257 ( 8) 

81  647 ( 90) 

kg/day (tons/day) 
total 

625 050  (689) 

19051 ( 21) 

81  647 ( 90) 

725 748  (800) 

5.1.1 LH2  LOADED ON AIRCRAFT 

The LH? that  must be loaded  on the  aircraft  includes  the LH2 vaporized during  liquid 
expulsion.  tank cooldown and  tank  loading, in  addition  to  the block fuel.  The  allocations 
of hydrogen  (table 1) were  developed as follows: 

Block Fuel 

Block fuel  includes  all  the  hydrogen used by the  aircraft from the  time  it  leaves  the 
gate  to  its  arrival  at  its  destination or its  next  refueling  stop, as determined  from 
current  operations.  This  amounts to  544 311 kg (600 tons)  per  day for the ORD fleet, as 
described  in  section  4.5. 

Blowdown Reserve 

Blowdown reserve  includes  the GH2 displaced during  aircraft  loading  plus  the LH2 
vaporized during  resaturation of the LH2 to the  loading  system  back  pressure. Both 
these  items  are  part of the  aircraft  unusable  fuel  and  must be replaced  each  time LH2 is 
loaded on the  aircraft. 

The blowdown reserve  was  calculated  assuming  the LH2 remaining  in  the  tanks  was 
equal  to  flight  reserves  plus  unusable  fuel  and  the  pressure  in  the  tanks  is  reduced  from 
144.8  kPa  (21  psia)  to  104.8  kPa  (15.2  psia)  prior to loading.  The LH2 vaporized during 
the  resaturation process  is  approximately 18 144  kg  (20  tons)  per  day;  the GH2 displaced 
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during  loading  is  approximately 16 329 kg (18 tons)  per  day.  These  values  are  based  on 
the  study  aircraft  with a tank  heat  leak of 55.2 w/m2 (17.5 B t u h r  ft2).  These  losses 
could  be  reduced by improving  the  aircraft  tank  insulation  and/or  using  a lower tank 
vent  setting  as  described  in  section 4.4. 

Vent-Loss Make-up 

The  vent-loss  make-up  is  the  ground boiloff  from the  aircraft  tanks  prior to  refueling. 
This  was  calculated  using  the  airport  and  aircraft  data  presented  in  section 4.3. Aircraft 
tank boiloff  was  assumed  to  be a direct  function of wetted  tank  surface  area, as shown 
in  figure 19. This i s  representative of large,  continuously  venting,  lightly  insulated 
tanks of the  type  used  in  the  study  aircraft. 

Ullage Make-up 

Ullage  make-up is the  gas  required  to  repressurize  the  tank  volume  vacated by the 
liquid  during  expulsion  and  represents  unusable LH2 in  the  aircraft  tanks.  This  was 
calculated  using  the  aircraft  data  presented  in  section 4.5. 
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Figure 19.- L Hz Boiloff Rate-Baseline Airplane 
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Tank Cooldown 

Tank cooldown accounts  for  losses  from  active  aircraft  during LH2 loading  and  losses 
from  aircraft  returning  from  major  maintenance. It was  assumed  that  prior  to  refueling, 
aircraft   tanks would  be  vented  to a back  pressure of approximately 104.8 kPa 
(15.2 psia).  This  venting  to  a low back  pressure  does  not  allow  a  significant  temperature 
increase  in  the  aircraft  tank  walls  or  insulation  (less  than 1.2 K (2.2OR)) as long  as 
some  liquid  remains  in  the  tank.  Therefore, cooldown losses  from  active  aircraft  are 
relatively  small  (less  than 907 kg/day ( 1  ton/day)).  The  balance of the cooldown losses, 
4536 kg/day (5 tondday) is based on  two aircraft  per  week  returning  from  maintenance 
that  requires  tank  inerting. 

5.1.2 GROUND SYSTEM LOSSES 

The LH2 vaporized  in  the  ground  system is reliquefied,  hence i t  must be accounted for in 
the  liquefaction  plant  load  requirements.  The  allocations of this  hydrogen  were 
developed/obtained as  follows. 

Cooldown  Connect 

Cooldown and  connect  losses  include  cooldown  and  venting of the  lines  between 
hydrants  and  aircraft.  This  was  estimated  assuming  a  transfer  line  section  with  a 
holding  capacity of 13.6 kg (30 lb). 

Delivery  Lines 

Delivery  line  losses  include all losses  in the  distribution  system  from  the  hydrogen 
liquefaction  plant to the LH2 hydrants.  These  losses  were  estimated  using  data  obtained 
from Air  Products  and  Chemicals. 

S to rage   Fa rm 

Storage  farm  losses  were  calculated  using  data  provided by Air  Products  and  Chemicals 
from  similar  tanks. 

5.1.3 DEMAND  VARIATIONS 

Demand  variations  include  increases  in LH2 requirements  resulting  from  seasonal  and 
other  changes  in  airport  traffic.  The  nominal  requirements  were  derived  from  data 
contained  in  the ORD 1975 operations  report.  Approximately  two  days of LH2 storage 
capacity  is  available  to  handle  short  term LH2 demand  variations  resulting  from 
weather  or  short  term  (less  than 1 day)  interruptions  or  increases  in  service.  The 
operation of the  liquefaction  plant  will be adjusted  plus  or  minus 2% for refilling 
storage  tanks  and  to  handle  long  term  seasonal  or  strike-related  changes  in  demand. 
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5.2 CONCEPT  DEVELOPMENT  CONSIDERATIONS 

There  were  four  primary  areas  that   required  selection of an   approach   in   the  
development of the  baseline  system.  These  are  outlined  in  figure 18 and involve: 

1. Disposition of the  vent gas from  aircraft  and  ground  system 
2. Limiting  thermal  losses  and  thermally  conditioning  the LH2 in  the  distribution 

3. Limiting  the  impact of distribution  system  failures  on  airport  operations 
4. LH2 storage  techniques 

system 

5.2.1 VENT  GAS  DISPOSITION 

A basic  objective  in  the  development of the  baseline  concept  was  to  avoid  uncontrolled 
venting of hydrogen at  the  airport.  This  ground  rule  was  established  to  minimize  the 
possibility of entrapment  or  ingestion of GH2 in  enclosed  volumes,  such as aircraft 
wheel  wells,  terminal  air  conditioner  inlets,  etc.  The  four  vent  gas  handling  techniques 
shown  in  figure  20  satisfied  this  objective  and  they  were  evaluated  in  terms of 
operational  feasibility  and  cost  effectiveness.  These  techniques  involve: 

1. Utilization of an  on-board  burn  stack for GH2  from  the  aircraft  tanks  along  with 
stacks or a  burn pond  for GH2 vented  from  the  storage  and  distribution  system 

2.  Utilization of burn  stacks  or  a  burn pond for  all  vented GH2 

3. Recovery and  reliquefaction of all GH;? 

4.. Utilization of GH2 as  a powerplant fuel 

The  design of an  aircraft  on-board  vent  gas  disposal  system  that  must  handle a GH2 
flow ranging  from 90.7 kg/hr  (200  lb/hr)  to 4309 kg/hr (9500 lblhr) - inactive  to 
blowdown - would not be difficult.  but would add to aircraft  fuel  subsystem  complexity, 
weight,  and cost. The  design of a  ground  stack  system  that  could  handle  the  nominal 
boil-off from a single  aircraft,  as well as 12  simultaneous  aircraft  blowdowns  is  possible, 
but  difficult,  and  the  stack  system  could  not be located  in  the  terminal  area  for  safety 
reasons.  The  same would apply  for a burn  pond  except,  in  this  case,  variable  load  bubble 
caps could  be used  to  adjust  the  system  for a wide range of flow conditions.  However, 
recovering  and  reliquefying  all  the  GH2  also  reduces  the  duty cycle variation  impact by 
allowing  the'  introduction of GH2 vent gas into  the  primary GHz supply  to  the 
liquefaction  plant; a flow of 30  239  kghr  (66 667 lbshr).  This  technique  also  allows  the 
saving of GH2 and,  with  insulated  lines,  the  saving of refrigeration  (energy).  These 
savings  are  reduced by the cost  and  maintenance of the  vent  gas  return  system. As 
shown  in  figure  21,  the  cost  return  from  the GH2 saved  plus  the  refrigeration  power 
exceeds the cost of a vacuum  jacketed  vent  return  system.  This is true  even at $0.29/kg 
($0.13/lb) which is an  extremely  optimistic  cost  estimate  for GH2. 

Utilization of hydrogen as a fuel  to  satisfy ORD electric  power  requirements  was  also 
evaluated.  The  current  ORD  requirement is 35 megawatts.  The  baseline  hydrogen 
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liquefaction  and  distribution  system  requires  approximately 350 mw.  This  translates 
into a hydrogen  requirement of 694 000 kglday  (765  tons/day)  assuming a 40%0 hydrogen 
to  electric  power  conversion  efficiency.  This  quantity of hydrogen is almost  seven  times 
the  quantity of vent  gas  recovered at  the  airport.  This  imbalance  between  supply  and 
requirements,  along  with  the  loss of refrigeration,  does  not  favor  the  utilization of vent 
gas  for  electric  power  generation. A second  possibility would be  to  utilize  gaseous 
hydrogen  piped  to  the  airport  for  power  generation.  This  would  not  result  in a 
refrigeration  loss  and would  offer an  environmentally  acceptable  alternative  to fossil 
fuel  or  nuclear  power  generation.  However,  to  be  cost  competitive  with  the  25 
milslkwh  (1975  dollars)  power  cost  projected  for  Illinois,  the  cost of GHz must  be  less 
than $0.22/kg  ($O.lO/lb).  The  ability  to  supply 385 mw  to ORD was  checked  with 
Commonwealth  Edison of Illinois.  They  indicated  this  power  requirement is well  within 
their  current  reserves  and  should  be  no  problem  in  the 1990 - 2000  time  period.  In  the 
development of the  baseline  system, it was  assumed  that  Commonwealth  Edison  would 
provide  power at a cost of 25  mildkwh. 

A vent  gas  recovery  system  was  chosen for the  baseline  concept  because: 

1. It allowed a simple  solution  to  vent  gas  duty cycle matching 

2. It was  cost  effective 

3. Vent gas supply  and  electric  power  demand  did  not  match 
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5.2.2 LH2 DISTRIBUTION  AND  CONDITIONING 

A primary objective of the  baseline concept was  to  limit  the  impact of Hz on  the  air 
terminal  facilities  and  airline  operations.  This  requirement  essentially  dictated  delivery 
of LH2 to  the widebody gates  as  they  currently  exist  and a provision  for  redundancy  in 
case of a distribution  system  failure. 

The  simplest  distribution  system from a hardware a m  architectural  standpoint  is 
.fueling aircraft by tank  truck.  This concept  was  rejected by the  airport  authority 
because  it would not be physically  possible  to  provide room  for tank  trucks  in  the 
terminal  ramp  area. It was  also  noted that  fueling  the  aircraft  outside  the  gate  area 
would require  increased  turn-around  times for the  aircraft,  an  objectionable  restraint  to 
the  airlines.  These  alternate  fueling  methods  are discussed  in  more  detail  in  sections 7.3 
and 7.4. The  remaining.  distribution  system  option  was to deliver LH2 to the  gates  via 
insulated  pipe.  Ignoring  cost,  the  primary  problem  with  this  technique  is  that  heat 
transferred  to  the LH2 in  the  distribution  lines  would-result  in  an  increased  bulk  liquid 
temperature.  This  increased  temperature could result  in LH2 flash  vaporization  during 
aircraft  loading.  The  problem would be particularly  severe  during low traffic  periods, 
such as  from 9:00 p.m.  to 5 : O O  a.m.  at  O’Hare. Two methods  were  considered  for 
eliminating  this  problem.  These  were: 

1 .  Recirculating LH2 back  to the  storage  farm.  This  prevents a significant LH2 bulk 
temperature  increase by decreasing  liquid  residence  time  and  allows  conditioning 
of the  liquid  to  a  saturation  temperature  approaching 101 kg (1 atmosphere)  in  the 
storage  tank. 

2. Flash  vaporizing  the  liquid  immediately  up-stream of the  ground-to-aircraft 
connect.  This  allows  the  liquid  temperature  to  rise  in  the  pipeline,  then 
reconditions  the  liquid by flash  vaporization on a  demand  basis. A possible 
configuration for the  flash  vaporizer  is  shown  in  figure 22. 

Operating  characteristics for the two distribution.  system  techniques  are  shown  in 
table 2 .  The  flash  vaporization  system  was  chosen for the  baseline  because: 

1. It  required  the  least  quantity of line 

2 .  It  required  the lowest  delivery  pressure  for  a  given  line  size 

3. It  resulted  in  the  lowest  overall losses 

Limiting  the  delivery  pressure  was  considered  mandatory to prevent  any  condition  that 
would  allow the  aircraft  tank  pressure from  exceeding  its  relief  setting of 248 kPa 
(36 psia). A pressure of approximately 345 kPa (50 psia)  should  satisfy  this  concern, 
considering  the  connect  system  pressure  drops. 
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Table 2.- L H2 Distribution and  Conditioning  System  Comparison 

Item - 

Line ID - m 
(in.) 

Delivery pressure - kPa 
(psis) 

Aircraft connect pressure - 

Boiloff - kg/day 
(tondday) 

LH2 line length - m 
(fit) 

Technique 
Flash 

wporization  Recirculation 

0.41 
(16) 

345 
(50) 

k Pa 145 
(psia) (21 1 

3629 
(4) 

6,706 
(22 000) 

0.41 0.51 
(16) (20) 

276-1034  193-441 
(40-1 50) (28-64) 

145-924  145-393 
(21-134)  (21-57) 

6623  8437 
(7.3)  (9.3) 

13411   13411  
(44 000) (44 000) 
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5.2.3 DISTRIBUTION  SYSTEM  FAILURE  IMPACT 

To accept LH2 as an  aircraft  fuel,  the  airlines  must  be  satisfied  that  system  failures 
and/or  maintenance  requirements  will  not  result  in  major  disruption  in  their  schedules. 
The  impact of failures  in  the  hydrogen  liquefaction  facility  and  the  storage  tank  farm 
can  be  limited  using  classic  redundancy  techniques.  Redundancy  can  also  be  applied  to 
limit  the  impact of failures  in  the  distribution  system.  The  application of redundancy  in 
the  distribution  system,  however,  requires  more  than a simple  doubling of components 
because: 

1. The  use of two  lines  filled  with LH2 increases  losses  and  requires  a  large  unusable 
liquid  inventory 

2. The  use of an  empty  standby  liquid  line  leads  to  a  significant  airport down time for 
cooling the  line to operating  conditions 

As discussed  earlier,  it  was  determined  that  recovery  and  reliquefaction of hydrogen 
vent  gas  and  associated  refrigeration  was  desirable.  It  was  also  determined  that  the 
vent  gas  return  line  size  requirement  was  approximately  equal  to  the  liquid  delivery 
line  size.  This  allowed  consideration of both  four-  and  three-line  systems  that would 
satisfy  redundancy  requirements.  Table 3 shows  the  options  and  associated  advantages 
and  disadvantages. A three-line  system  with  one  normally  filled  with  liquid  and  two 
used for venting  was  selected for the  baseline.  The second vent  line  also  can  be  used as 
a  substitute LH2 supply  line.  This  option  has  a  potential for requiring  an  airport 
shutdown  period of greater  than 1 hour for  cooldown, except  during  peak  operating 
hours,  when  the  vent  gas flow is  sufficient  to  maintain  adequate  line  precolling  for  the 
rapid  introduction of LH2. 

5.2.4 LH2 STORAGE  TECHNIQUES 

The  development of a  storage  technique for LH2 involved  limiting  losses  (insulation), 
satisfying  delivery  requirements  (expulsion),  and  safety  (location).  Table 4 shows  the 

Table 3.-L H2 System  Considerations 

Consideration/Option Advantages  Disadvantages 

Distribution svstem redundancv 

0 Total 
(2 vent/2  liquid) 

0 Partial 
(2  liquid/l vent) 

0 Partial (selected) 
(1  liquid/2 vent) 

0 Minimizes airport  down  time 0 

0 Accommodates airport  growth 0 

0 Lowers cost 0 

Low airport  down  time 0 

" . . 

(no  precool) 
~ ___-..-_ 

Lowers cost 0 

Minimizes unusable liquid 
inventory 

High cost 
Large  unusable liquid  inventory 

Large  unusable liquid.inventory 
Liquid  line must be emptied i f  
vent line  fails 

.., , - . 

.~ - 

One hour or greater airport 
down  time possible 
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Table 4.-LH2 Storage  Characteristics 

ConsiderationlOption Advantages 0 isadvantages 

Insulation 
0 Non-evacuated 

Foam 
0 Laminar 
0 Frozen earth 

0 

0 

0 

0 

0 Evacuated  (selected) 0 

0 

0 

Configuration flexibility 
Not size limited 
Simple field fabrication 
Apparent adaptability to 
underground installation 

High  maintenance 
Redundancy requirement limits size 
advantage 
Unproven for  LH2 (poor results with 
LNG ) 
Variable thermal performance 

Low  maintenance Difficult  to use in underground 
(proven in  LH2 service) installation 
Required size within Configuration limited 
state-of-art 0 Requires skilled labor for field 
Low  and predictable heat  leak installation 

Expulsion 
0 Pressurized Low  cost Relatively high tank  pressure 

0 Low  maintenance 0 Variable LH2 saturation temperature 
0 Difficult  duty cycle match 

0 Pump  (selected) LH2 saturation temp. controlled High  maintenance 
0 Simple duty cycle  match 
0 Low tank pressure 

Location 
0 Underground 0 Directed detonation 0 Maintenance difficult 

0 Limited spill potential 0 Increased detonation potential 

0 Above ground (selected) Limited detonation Potential Difficult spill control 
0 Easy  access for maintenance 0 High visibility 
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options  and  associated  advantages  and  disadvantages  in  each of these  areas.  Proven  in 
service,  evacuated  insulation  was  chosen  for  the  baseline  because of its low and 
predictable  heat  leak. A satisfactory  alternate  'technique  has  not  been  developed. 
Pumped  expulsion of LH2 was  chosen  for  the  baseline  concept  to  satisfy a distribution 
system  requirement  for a n  approximately 101 kPa (1 atmosphere)  pressure  saturation 
temperature.  This  condition is difficult if not impos'sible to  meet  using  pressurized 
expulsion  and  the  requirements of the ORD liquid  delivery  duty cycle. The low storage 
tank  pressure  was  also a safety  consideration  in  the  selection of pumped LH2 delivery. 
At  first  glance  underground  'storage of LH2 appeared  desirable  from  a  safety  standpoint. 
However,  space  provisions  for  maintenance  on  underground  tanks  increased  the  danger 
of creating  trapped  volumes of GH2.  These  trapped  volumes  increased  the  possibility  for 
detonation,  hence  decreased  the  safety  advantage  for  underground  storage.  These 
considerations,  and  the  fact  that  a low storage  pressure would be  utilized,  led  to  the 
selection of above  ground LH2 storage  for  the  baseline  concept. 

5.3 SELECTED  CONCEPT  DESCRIPTION 

Details of the  selected  concept  were  developed  based on analyses of requirements  and 
considerations  presented  in  sections 5.1 and 5.2.  These  details  include  the  sizes  and 
operating  characteristics of major  system  elements  and  associated  components.  The 
major  elements of the concept and  their  location on the  airport  are  shown  in  figure 17. 
Figure 23 is a schematic  showing  the  liquefaction,  storage,  and  distribution  elements of 
the  system. 

Installation of the  system  and its impact on the  airport  are  presented  in  section  5.5;  the 
impact on airline  ground  operations is presented  in  section  5.6. 

5.3.1 LIQUEFACTION  FACILITY 

Gaseous  hydrogen  is  delivered  to  the  airport  in  two  0.36-m  114-in.)  diameter (ID) pipes 
a t  a  pressure of 4480  kPa  (650  psia)  and at  ambient  temperature.  Each  supply  line  has 
sufficient  capacity to meet  the  demand of the  liquefaction  plant.  The  supply  hydrogen  is 
stored  in  an  underground  accumulator before i t  is piped into  the  liquefaction  plant. 
Pressure  in  the  accumulator is kept  at  4480  kPa  (650  psia).  The  accumulator  volume  is 
approximately  7510 m3 (265 000 ft3). This  allows  smoothing of the flow to the  liquefier 
and  adequate  standby  hydrogen for a  switch  from  dual to single  line GH2 delivery. 

Impurity  levels of gaseous  hydrogen  delivered  from  the  hydrogen  gasification  plant  are 
in  the  order of one  ppm  total  content of nonhydrogen  species,  except  it  is  assumed  to  be 
saturated  with  moisture.  Moisture  is  removed at the  liquefaction  plant. 

The  hydrogen  liquefier  is  designed  for a nominal  output of 726  x lo3 kglday 
(800  tondday).  This  output  can  be  varied ?200/0 to  meet  fluctuations  in  fuel  usage  and 
in  storage  tank  levels.  The  liquefier  is  designed  to  produce  essentially  all  para 
hydrogen.  This  represents  a  higher  energy  cost  than  that  obtained by direct  liquefaction 
of the  delivered  gaseous  hydrogen  (approximately 75% ortho  hydrogen).  However,  the 
stability of para  hydrogen is required  to  insure  predictable  aircraft  fuel  loads. 
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The  hydrogen  liquefaction  plant,  shown  in figure 24,  consists of three  modules,  each 
having  approximately  243 080 kglday(268  tonslday)  capacity.  Each  module  consists of 
one Hz liquefier,  six Hz recycle  compressors  and  two  feed  gas  driers.  Heat  exchangers 
within  the Hz liquefier  are  multiple  units  installed  in  parallel.  In  addition,  each  module 
includes a nitrogen  liquefier  and a purifier  to  remove  impurities  from  return  vent  gas. 
Liquid  nitrogen is used  to precool high  pressure  hydrogen  .feed  gas  in  the  hydrogen 
liquefier  process. 

A  building  containing  an office, maintenance  station,  and  central  control  station  is 
located at   the   s i te  of the  liquefaction  plant.  The  functions of the  central  control  station 
are  to  monitor  and  control  liquefaction  process,  storage  and  distribution of LH2, 
pumping of GH2 return,  to  detect  leakage  and  vacuum  break of pipe  line,  and  to  keep 
records of fuel  delivered. 

Nitrogen  is produced and used as a refrigerant  in  the  hydrogen  liquefaction  process.  A 
portion of this  nitrogen  is  stored  in  an  accumulator for use  in  purging  airplane  fuel 
tanks.  The  accumulator  pressure  varies  from  550  to  1030  kPa (80 to  150  psia). 

5.3.2 STORAGE  FACILITY 

Liquid  hydrogen  is  stored  in  four  spherical  tanks  located  adjacent  to  the  hydrogen 
liquefaction  plant.  Total  capacity of these  tanks  is  equivalent  to 2 days of LH2 
production  (1.45  x lo6 kg  (1600  tons)). Two of the  tanks  are  maintained  in a full 
condition  to  provide  back-up  for  major  short-term  failures,  such as liquefaction  plant 
power loss.  The  other  two  tanks  are  used as active  storage  to  handle  the  peaks  and 
valleys  in  daily  liquid  demand.  One of these  tanks  also  acts as reserve  storage  when a 
storage  tank  must be emptied for maintenance. 

Hydrogen  from  the  liquefaction  plant  is  piped  into  active  storage  before  distribution to 
the  refueling  stations.  A  rail  spur is provided  for  transportation of LH2 in  tank  cars  to 
the  storage  tanks  as  a  backup  system  to  the  liquefaction  plant.  Approximately 
37 500 m2 (8.8 acres) of clear  land is required  for  the  storage  facility. 

The  storage  tanks  are  located  above  ground.  An  aggregate of stones  enclosed  in  a 
concrete  retaining  wall  is  placed  underneath  the  storage  tanks  to  serve as a  heat  sink 
in  the  event of tank  rupture.  This  accelerates  vaporization of LH2. The  storage  tank  is 
of double-wall  construction  with  a 23.2 m  (76  ft)  diameter  stainless  steel  inner  sphere. 
The  annular  space is evacuated  and  filled  with  perlite  powder  insulation.  Figure  25 
presents  a  schematic of a  storage  tank.  The boiloff rate from the  storage  tanks  is  less 
than 1% of the.  daily  liquefaction  rate  (7.26  x lo3 kg/day (8  tondday)).  This boiloff is 
collected,  compressed,  and  piped  back to the  liquefaction  plant.  The  nominal  storage 
pressure is 110  kPa (16 psia).  Pressure  in  an  active  stcrage  tank is allowed  to  reach 
138 kPa (20 psia). 

5.3.3 DISTRIBUTION  SYSTEM 

The LH2 delivery  and  vent  gas  return  lines  are  shown  in  figure  23.  The  system  consists 
of LH2 supply, GH2 vent  gas  return  lines  and  also a redundant 16 in. ID line  extending 
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from the LH2 pumping  station  to  the  junction  where  the  lines  branch  out  to  the 
passenger  terminal  building.  This  redundant  line  is  normally  used as a GH2 return  vent 
line,  but  can be used  in  the  event  the  main LH2 supply  line  must be shut  down  for 
maintenance  work.  Any  sections of the LH2 supply  and GH2 vent  gas  return  lines  that 
can  be  isolated  with  shut-off  valves  are  equipped  with  pressure  relief  valves.  Gaseous 
hydrogen  discharged  from  the  relief  valves  is  routed  to  the  burn pond through 0.102 m 
(4 in.) ID lines. 

Supply Lines 

The  main  supply  line  has  a  capacity of 226 750 kg/hr (500 000 lb/hr) at 345  kPa  (50 
psia).  Each  branch  line  is  capable of supplying  four  hydrants at full  airplane  refueling 
rate.  The.  design flow rate of each  hydrant  and  airplane  connection  is  56  688  kglhr 
(125 000 l b h r )  which  is.  equivalent  to  loading  the  average ORD LHp airplane  in  10 
min.,  or  loading a full  tank of fuel  in  1/2  hour. 

The  main  supply  lines  and  the  branch  lines to  each  terminal  finger  are  approximately 
0.406 m  (16  in.) ID.  Four 0.178 m (7 in.) ID fuel  hydrants  are provided in  each  terminal 
branch  line. A variable  capacity  pump  installed  in  the  main  supply  line  pumps  liquid 
hydrogen  to  a  maximum  pressure of 345  kPa  (50  psia) for airplane  refueling.  Airplanes 
are refueled  with  a  tank-back  pressure  above  ambient,  but  not  above  145  kPa  (21  psia). 
The LH2 fuel  distribution  line  pressures  at  the  design  condition  are  shown  in  table 5 
and  figure 26. The  system  pressure  drop  characteristics as a function of airplane 
refueling  rate  are  shown  in  figure 27. 

Redundant  pumps  are placed  in the LH2 trunk  line.  Each  pump  has  a  capacity of 
delivering  the  design flow rate of 226  750 k g h r  (500 000 l b h r )  at 345  kPa  (50  psia), 
therefore  a  pump  failure would not  cause a fueling  delay.  Constant  pump  output 
pressure of 345  kPa (50 psia)  is  maintained by varying  the  pumping  rate  according  to 
demand.  The  fuel  supply  pressure  varies at  the  airplane  connection,  depending on the 
number of simultaneous  airplane  fueling  connections  made. A fuel flow control  on the 
airplane  fuel  connection  regulates  the  airplane  fuel  supply  pressure t o  a maximum of 
145  kPa  (21  psia)  during  normal  refueling. 

Heat  leaks  through  the LH2 distribution  lines  cause  approximately 9070 kg  (10  tons) 
per  day of LH2 boiloff. Heat  leak  is  estimated  to be apprflximately  4510  kg (5 tons)  per 
day  through  super-insulated  V-J  lines  and  the  remaining  4510 k g  ( 5 .  tons)  per  day 
through  pumps,  shutoff  valves,  pressure  relief  valves,  hydrants,  etc.  Heat  leak  through 
superinsulated  vacuum  jacketed  lines  was  estimated  from  heat  leak  factors  provided by 
Air  Products  and  Chemicals,  Inc. 

Return  Vent  Line 

All aircraft  are connected  to a vent gas return  during  their  entire  ground  stay.  Vent  gas 
return  lines  are provided at maintenance  areas, as well as at the  gates.  Airplane 
fuel-tank  vent gas and boiloff are  normally  routed  back  to  the  liquefaction  plant; 
however, a burn pond is  provided as a back-up  system  for  disposing of gaseous 
hydrogen. 
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Table 5.-L H2 Fuel  Distribution System  Characteristics 

Maximum  fuel  distribution rate = 226 750 kg/hr (500 000 Ib/hr) 

LH2  fuel  distribution  pump: 

Inlet pressure 
Outlet pressure 
Pump power requirement 

= 101 kPa (14.7 psia) 
= 345 kPa (50 psia) 
= 298 kw  (400 HP) 

Distribution line pressure drop: 

Pump out pressure = 345 kPa (50 psia) 
Main supply line pressure drop  (16  in. ID) = 145 kPa (21 psig) 
Branch line pressure drop  (16  in. ID) = 28 kPa (4 psig) 
Aircraft  connection pressure drop (7 in. ID) = 28 kPa (4 psig) 
Aircraft  fuel tank pressure = 145 kPa (21 psia) 

P = 345 kPa (50 psia) 1 
LH2 supply 

I 
I 

I 
__c l P  = 200 kPa (29 psia) 

To liquefaction  plant 

P = 483 kPa (70 psia) 

P = 143 kPa (20.7 psia) 

Note: 

4s Aircraft  refueling 

@ Shutoff valve 

@ Check valve 

Pump 

a compressor 

LH2 supply line 

"" Return vent line 

Figure 26. " L H 2  Branch  Line  Design Condition 
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Figure 27.-LH2 Distribution  Line Pressure Drop 

Pressure  distribution at the  design  condition  in  the GHz return  vent  line  is  shown  in 
table  6. The  design  condition  assumes  the  tanks of 12 widebody  aircraft  are 
simultaneously  depressurized.  This  also  allows  refueling  three widebody airplanes  in 
addition  to cooling  down fuel tanks of four widebody airplanes,  as  shown  in  figure 28. 

The  airplane LHz fuel flow rate is kept below 14 285 kg (31 500 Ib) per  hour, or 
one-fourth  the  design  refueling  rate  during  fuel  tank cooldown. This  is  to  keep  the 
airplane  fuel  vent  system  and  vent  return  connection below 0.178 m (7 in.)  ID.  Also, 
airplane  fuel  tank  pressure  during cooldown is allowed  to  increase  to 172 kPa (25 psia). 

Vent  gas  from  each LH2 aiicraft  gate  is collected and  manifolded  into  two 0.406 m 
(16 inch)  ID  branch  lines.  Four 0.178 m (7 in.)  ID  vent  line  connectors  are provided  on 
each  branch  line. A small compressor is designed  to  handle boiloff during cooldown of 
two aircraft at a  total flow rate  of 28  344 k g h r  (62  500 lb/hr)  and  used  to  keep GH2 
pressure  in  the  vent  line  from  dropping below ambient.  The  compressors  in  the  branch 
lines are bypassed during  normal  refueling  conditions. 

o x lo3 

The  main  return  line  is  designed  to  handle 56  699 kglhr (125 000 lblhr) of boiloff. Three 
compressors  placed  parallel  in  the  main  return  line boost vent gas pressure  to 393 kPa 
(57 psia).  This  is  to  ensure  return  vent  line  pressure of not  less  than 207 kPa (30 psia) 
at the  liquefaction  plant. Flow rate  in  the  compressors  is  varied  according  to  the 
amount of vent  gas  to be  evacuated. Any  two of the  compressors  are  able  to  handle  the 
design flow requirement. 

5 1  



Table S.-GH2 Vent  Return System  Characteristics 

LH2 boiloff rate 
Pressure drop  from branch  line to main compressor 

Main compressor inlet pressure 
Compressor outlet pressure 
Compressor outlet temperature 
Compressor power requirement 
Line pressure drop  from main compressor to 

inlet 

storage tank 

Storage tank inlet pressure 
Storage tank inlet temperature 

= 56  688  kglhr (125 000 Iblhr) 

= 62 kPa (9 psig) 
= 117 kPa (17 psia) 
= 400 kPa (58 psia) 
= 53 K (96"R) 
= 3500  kw (4700 HP) 

= 190 kPa (27.5 psig) 

= 207 kPa (30 psia) 
= 53 K (96OR) 

~ . ~"~ 

Distribution  and  Vent  Line  Design 

A schematic of the  superinsulated  vacuum  jacketed  line used in  the LH2 distribution 
and  vent  gas  return  system  is  shown  in  figure 29. The  inner  pipe is wrapped  with 
thermal  radiation  shielding,  such  as  aluminized  mylar,  and  encased  in  a  vacuum  jacket. 
These  inner  pipes  are  welded  in  the field  to one  continuous  piece,  and  provided  with 
bellows a t  each  valve,  where  there  is  a  significant  line  direction  change,  and  where 
there is a  hard  point  restraint.  Pressure  relief  devices  are  provided  in  each  section of 
line  that  can be isolated by valves. 

The  vacuum j a c k e t '  is made up  of 152-m ( 5 9 3 - f t )   s e c t i o n s .  T'ne vacuun 
b reaks   have   evacua ted   j o in t s  as shotm i n   f i g u r e   2 9 ,  t o  minimize   hea t  
leakage .  

Maintenance 

Vacuum  gauges  and  transducers  are  provided  for  central  control  station  monitoring of 
the  vacuum  level  in  pipes  and  components. If hydrogen  leakage  or  loss of vacuum  are 
detected  in  the  distribution  lines,  the  liquid is drained  and  the  line  warmed  and  purged 
with  nitrogen  before  repair  work  is  initiated. 

Upon  completion of repairs, air is purged  from  the  transfer  line  before LH2 is 
introduced.  The  line is purged  with  nitrogen  gas  and  then  with  warm  hydrogen  gas.  The 
nitrogen  gas  concentration  must be a t  a very low level  before cold hydrogen  gas is 
introduced  or  it  will  solidify  and could prevent  the  valves  from  closing  and block 
instrumentation  lines. 

Shutoff  valves  are  installed  in  the  main  supply  line  to  isolate  sections for maintenance 
work in  the  event of vacuum  jacket  failure.  The  main  supply  line is installed  with  a 
downward  slope of approximately 1:lOOO toward  the LH2 plant, so that  liquid  hydrogen 
can be returned  to  storage  prior to pipe  maintenance.  Isolation  valves  are  provided  on 
each  branch  supply  line  and  branch  return  vent  line for easy  maintenance of fuel 
hydrants  and  return  vent  connectors. 
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To liquefaction plant P =  124 kPa (18 psia) 
T = 22 K (40' R )  

P = 400 kPa (58 psia) 
T = 53 K (96' R )  

Phydrant = 199 kPa (28.9 pSia) 

P = 117 kPa (17 psia) 
Pfuel tank = 172 kPa (25 psia) 

P = 179 kPa (26 psia) 
T = 28 K (51' R )  

Note: 
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Figure 28.-GH2 Return Vent Line Design Condition 
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Figure 29.-Super Insulated  Vacuum-Jacketed Pipe 

Operation 

Airplanes  are  normally  refueled at  the  passenger  gates  and  cargo  air  terminals. 
However,  warm  airplane  fuel  tanks  are cooled using  hydrogen.  routed  through  a 
truck-mounted  hydrogen  recycle cooldown and  recovery  system.  This cooldown is 
conducted  away  from  the  terminal  area,  principally  in  the  maintenance  area.  The  use of 
a recycle  cooldown and recovery  system  is  expected  to be more  economical than  direct 
cooling with LHp. and  maintains  availability of  LHp hydrants  during  the  extended  time 
periods  required  for cooling. 

Except under  emergency  situations,  defueling of airplanes for fuel  tank  maintenance  is 
conducted  in the  maintenance  area.  The  fuel is offloaded into  refueling  trucks  and 
transferred  to  the LH2 storage  tanks. 

Upon defueling,  airplane  fuel  tanks  are  warmed  and  purged of gaseous  hydrogen,  with 
gaseous  nitrogen  piped to the  maintenance  hangars from the  nitrogen  generation  plant. 
Before refueling  with LH2 upon  completion of maintenance  work,  the  fuel  tanks  are 
purged  with  nitrogen  gas  to  ensure  that  they  are  free of oxygen. 
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Winter  weather  conditions at O'Hare  field  would  cause  considerable  inconvenience if 
maintenance  operations  not  requiring  aircraft  defueling  were  conducted  outdoors. 
Therefore,  maintenance  hangars  are provided  with  aircraft  vent  connections  to  the GH2 
collection  system  and  high  volume  ventilation  systems.  The  rate of ventilation  is 
controlled by hydrogen  detectors  mounted  near  the  vent  connections  and at hangar  high 
points.  The  maintenance  area  is  also provided  with a gaseous  nitrogen  supply  for 
purging  warm  hydrogen  tanks. 

5.4  SYSTEM  SAFETY  FACTORS 

Safety  requirements  established by the  National  Fire  Protection  Association  are 
incorporated  in  the  design of the  airport LH2 and GH2 facilities.  Methods of hydrogen 
hazard  control  and  safety  recommendations  suggested by major  hydrogen  producers  and 
major users  such as NASA, Atomic  Energy  Commissions,  etc., are  used  in  areas/designs 
where  applicable.  In  general,  these  safety  recommendations  are  concerned  with 
exposure of the  personnel  and  facilities  to  hazards of hydrogen.  However,  in  this  study, 
the  safety of the  hydrogen  system  from  the  various  hazards  associated  with a major 
airport  operation is given  equal  emphasis. 

5.4.1  LIQUEFACTION PLANT  AND LH2 STORAGE 

Location  of.  these  facilities  on  the  airport  has  been  established,  in  part, by potential 
hazards  associated  with  aircraft  operations.  Distance  from  the LH2 facility  to  active 
runways is such  that  an  aircraft,  crashing  during takeoff  or  landing,  will  probably  not 
impact  and  burn  (kerosene  fire) close enough  to  the  hydrogen  facilities  to  cause  damage 
or  ignition of hydrogen.  Studies of jet  transport  accident  data  indicate a distance of 
305 m (1000 ft) from an  active  runway  centerline  to  the  hydrogen  facility  is  adequate 
spacing.  These  historical  data  are  shown in figure 30. 

Liquefaction  plant  and  storage  sphere  spacing  is  established  to  provide  protection  from 
a  hydrogen  fire.  This  spacing  is  such  that a fire  resulting  from a massive  liquid 
hydrogen  spill  will  not  damage  adjacent  tanks  or  equipment.  Each  storage  sphere 

0 Where aircraft came to rest 

Takeoff  or landing - 

\Typical  runway 61 rn x 3048 m (200 f t  x 10 000 ft) I 
1 . 1 . 1 . I  

Minimum clearance, LH2 facilities 

Figure  30.--Runwa y Clearance Criterion 



installation  includes a dike  enclosure  capable of containing  the  entire  contents of the  
sphere.  The  minimum  distance  from  the  edge of a dike  to  the  surface of an  adjacent 
storage  sphere or  to  an  adjacent  facility  is 62 m (205 ft).  A  minimum  distance of 107 m 
(350 f t )  from the  edge of the  dike  to  adjacent  inhabited  buildings is maintained. 

A policy of nonconfinement  is  applied  to  the  design  to  minimize  the  possibility of an  
explosion i f  a hydrogen  leaklspill  occurs.  Safety  relief  devices  and  controls are protected 
from  physical  damage  and  readily  accessible  for  emergency  shut  down.  Control  systems 
are  automated  fail-safe  designs  such  that  incapacitations or personnel  error  will  not 
damage  the  system,  cause a hazardous  situation, or result  in  injury  to  personnel.  The 
system  design  considers  protecting  the  system  and  facility  from  the  operators, as well as 
the  operators  from  the  hydrogen  system.  Major  components of the  facility  (system)  are 
separated,  isolated,  or  protected  such  that a failure of one  will  not  likely  result  in 
failure  to  another,  i.e.,  a.cascading  effect. 

5.4.2 LH2 DISTRIBUTION  AND GHz COLLECTION  SYSTEM 

All piping  (vacuum-jacketed)  from  the  storage  area,  to  the  terminal  refueling  areas  is 
located  in an  underground  tunnel  to  minimize  the  possibility of damage  from  vehicular 
and  aircraft  movement  and  from  other  airport  activity.  Adequate  ventilation  is  provided 
in  these  enclosures  to  assure  that a combustible  mixture of hydrogen  and  air will  not 
accumulate  in  event of a leak.  Hydrogen  detectors,  vacuum loss detectors  and  heat 
sensors  are  installed  to  warn of system  leakage  and  fire  in enclosed areas. 

Terminal  area  branch  lines  are located  on  top of the  terminal  buildings.  They are 
installed  in open channels  to  catch LH2 in  event of a massive  leak.  Gaseous  hydrogen  is 
prevented  from  entering  and  accummulating  in  terminal  buildings  by  the  positive 
internal  air  (ventilation)  pressure.  Hydrogen  leakage  in  the  area of a ventilation 
module  on  top of the  building  is  prevented  from  entering  the  building,  via  the  module 
air  inlet by stopping  the  air  inlet  fan  and  closing  an  inlet  door.  This is accomplished 
automatically by hydrogen  leak  detectors. 

To avoid  over-stressing  the  distribution  and  collection  piping,  thc  system  is  designed 
with  frequent  expansion bellows to  accommodate  a  temperature  range of about 278OC 
! W O O F ) .  To prevent  excessive  pressure  buildup,  the  design  provides  dual  pressure  relief 
protection  (relief  valves  and  blow-out  plugs)  in  each  section of piping  that  can be 
blocked by valves.  The  relief  gas  is  vented  into a relief  line  which  routes  it  to  the  burn 
pond. Leakage  in a section of piping  is  controlled  by  isolating  that  section  with  shut-off 
valves  controlled  automatically by hydrogen  detectors,  temperature  sensors,  and/or  line 
pressure  drop. 

5.4.3 AIRCRAFT  FUELING  SYSTEM 

The  primary  hazard  associated  with  the LHp hydrant  refueling  system  and  with  the 
LH2  truck  refueling  is  leakage  (and  fire) at the  airplane  receptacle, or a fuel  line 
rupture  (and  fire)  adjacent  to  the  aircraft.  The  hazard in either  event  is  minimized by 
rapid  (automatic)  shut down of the  fueling  operation.  The LH2 supply  line  is  supported 
in  a position  to  the  side of the  aircraft so that  in  event of a line  rupture, the LH2 will 
not flow on  the  fuselage or puddle  under  the  aircraft. 
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Fire  protection  in  the  refueling  area  is  provided  by a water  spray  directed at the 
aircraft,  passenger  loading  ramp,  and  terminal  building  wall  to cool materials below the 
ignition  point.  The  water  spray  is a fixed  installation  with  automatic  rapid  response 
operation. 

5.4.4 AIRCRAFT  MAINTENANCE  AND  HANGAR  AREAS 

Hangar  facilities  presently  in  use  are modified to  accommodate LHg-fueled aircraft. 
Existing  and  new  buildings  meet  the  requirements  established by the  National  Fire 
Protection  Association for explosion  venting  and  explosion  control. 

LH2-fueled aircraft  are  to  be  drained'and  purged  prior to being  placed  in  a  hangar, if an  
extended  period of maintenance  is  programmed.  Fueled  aircraft  may  be  hangared for 
short  periods of maintenance,  during  which  hydrogen bleed-off from tanks is captured 
and  returned  to  the  airport GH2 vent  system.  The  aircraft  should  not  be  left  unattended 
while  in  the  hangar  in  a  fueled  condition. 

Hangars  are  equipped  with  hydrogen  detection equipmenl:, which  is  located  in  areas 
where Hz can be trapped  and  accumulate.  The  system  has  rapid  response  and  will 
signal  an  alarm  and  automatically  initiate  high-rate  ventilation  before a combustible 
mixture  can  accumulate.  Special  attention is placed  on  control of ignition  sources 
inside  the  hangars.  This  includes  lighting  and  electrical  powered  equipment,  grounding 
of aircraft  and  maintenance  stands,  use of non-sparking  tools,  and  control of humidity 
to  reduce static charges. 

5.4.5 PERSONNEL  AND  TRAINING 

Training  must  be  a  continuing  function for all  personnel  involved  in  operation  and 
maintenance of the LH2 system  and  in  the  servicing,  maintenance  and  operation of 
LH2-fueled  aircraft.  Adequatelproper  maintenance, coupled with  a  systematic  inspection 
program, will  enhance  the  safety of the LH2 operations-only  trained  personnel  should 
be allowed to work  in  these  areas. 

The  type  and  extent of training  must be tailored  to  individual  jobs  or  assignments. All 
personnel,  however,  must be indoctrinated on the  characteristics of hydrogen,  the 
potential  hazards,  how  to  recognize  unsafe  situations,  and  on  the  contingency 
procedures  provided  in  the  emergency  plan.  Specific  training  should  include  the 
following: 

Liquefaction  plant  and  distribution  system  personnel  must  have  an  understanding 
of the  airport  operations  and  procedures.  They  must  have a high  degree of 
competence in  the LH2 system  operation  and  must  learn  to  recognize  system 
failures  or  malfunctions  and how to  react  to  emergency  situations. 

0 Aircraft  fueling  personnel  must  have a general   understanding of the  LH2 
distribution  system  and of the LH2 aircraft  fuel  system.  Training  must  include 
both  the  standard  and  emergency  operating  procedure  for  the  refueling  operation. 

57 



Danger  to  the  aircraft,  passengers,  and  terminal  building  in  the  event of a massive 
LH2 spill  must be  recognized and contingency  training  practiced  periodically.  This 
must  include  fire  fighting  and  heat  control  procedures. 

Aircraft  maintenance  personnel  must  have a thorough  understanding of the  
airplane  fuel  system  and of the procedures  for  defueling,  purging,  and  re-activating 
all or  part of the  system.  Hazards  associated  with  hydrogen  leakage  from  an 
airplane  in  an enclosed hangar  must be  understood  and  the  related  emergency 
procedures  must  be  practiced  periodically. 

Airport  security  and  fire  fighting  personnel  must  understand  the  potential  hazards 
to  the  airport  and  the  public  that  can  result from  massive LH2 spills;  this would 
include  fire,  immense  gaseous  hydrogen  clouds,  explosive  mixtures,  cryogenic 
temperatures,  and.  asphyxiation.  Training  in  controlling  these  hazards  must 
include  coordination of the  emergency  with  the  hydrogen  system  personnel. 
Emergency  training  must  include  the proper-responseiprocedures relating  to  an 
LHz-fueled aircraft  accident.  Rupture of the  aircraft  fuel  tanks would result  in a 
large LH? spill. 

5.5 SELECTED SYSTEM INSTALLATION 

The  hydrogen  system  includes  facilities  required  to  liquefy  and  store  the  liquid 
hydrogen,  and  the  distribution  network.  Both  parts of the  installation are required  to 
comply with  the  safety  criteria as well as the  requirements of reference 5. 

5.5.1 LIQUEFACTION AND  STORAGE  FACILITIES 

The  liquefaction  facility  arrangement. as shown  in  figure  24,  requires  an  area of 
approximately  42 700 m2  (10.6  acres). 

The  storage  facility for liquid  hydrogen  consists of four  spherical  tanks,  each 25 m 
(80  f t )  in  diameter  and  containing 5300 m2 (1 400 000 gal.) of liquid.  When  arranged  in 
a square.  the  tanks  and  their  impoundment  reservoirs  require  an  area of approximately 
35 700 m2 (8.8 acres). 

Reference 5 requires  that  an object 25  m (80 ft)  tall  (above  the  plane of the  runway 
surface)  should be not  less  than 323 m  (1060 ft) from the  runway  centerline,  which  is 
greater  than  the 305 m  (1000  ft)  separation  required by the  safety  criteria  for  hydrogen 
storage  tanks. No part  of the  liquefaction  or  storage  facilities  will  exceed  25 m (80 ft)  in 
height. 

To minimize  construction,  operation  and  maintenance  costs,  the  storage  facility  is close 
to  the  location of greatest usage. Most of the  fuel will  be  dispensed at the  existing 
passenger  terminal.  Therefore,  an  area of approximately  120 000 m2 (30 acres)  in  that 
vicinity  was  selected, as shown  in  figure 31. 

The  selected  site  is  located  almost  directly  south of the  center of the  passenger  terminal, 
across  the  intersection of Runway  14R-32L  and  9R-27L. It is   an open area,  designated 
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for  future  air  cargo  development.  Subject  to  future  development,  there is ample  area 
available,  with a railroad  available  for  surface  delivery of liquid  hydrogen  (backup). 
The  Chicago  Division of Aviation  Planning  concurred  in  the  selection of this  site  for 
study  purposes. 

5.5.2 DISTRIBUTION  SYSTEM 

The  fuel  system  also  includes GH2 and GNz lines,  valves,  hydrants,  compressors,  fans, 
and  monitoring  equipment.  The  approximate  routing of the  lines is shown  on  figures 31 
and 32 and  the  size  and  number of the  various  parallel  lines  are  given  in  table 7. 

Several  considerations  were  involved  in  selecting a practical  configuration for the 
distribution  system  installations,  as  illustrated  in  figure 33. These  considerations 
developed  into  the  requirements  shown  in  table 8 which  yielded  the  installation 
provisions of table 9. 

The  requirements  ruled  out  installation of the  lines by direct  burial  or  above  ground  on 
pedestals.  Differences  in  estimated  cost of tunnel  versus  gallery  construction, as shown 
in  figure 34, are  of insufficient  magnitude  to  establish  a  clear  preference.  Both  methods 
are  technically  feasible.  The  tunnel  concept  shown  in  figure 35 was  used  for  evaluation 
of the  installation. 

They  are  constructed by a tunneling  technique  rather  than by open-cut  trenching, to 
avoid  disruption of aircraft  operations.  The  steel  liner  plates  are  installed  incrementally 
as  the  tunnel  excavation  progresses, followed by an  injection of concrete  grout  around 
the  periphery  to  fill  voids. 

Various  arrangements of the  lines  within  the  gallery  or  tunnel, as shown  in  figure 36, 
were  considered. A straight-forward  arrangement of lines  on  the  same  horizontal  plane 
(Configuration no. 4, no. 8, or no. 10) was  selected. 

Figure 37 illustrates  a  method of removing a section of line  from  the  tunnel.  This 
operation would require  a'  battery-powered  hydraulic-actuated  cherry  picker.  A  hinged 
outrigger  swinging  under  the  line  provides  stability  during  the  eccentric  lift. 

Figures 38 and 39 show  a  configuration for the  required  structures  and for ventilation 
provisions  in the  tunnel. 

At  the  outer  end of each  concourse  the  hydrogen  lines  leave  the  tunnel  and  are  installed 
on the roof for distribution  to  the  airplane  fueling booms located  thereon.  Figure 40 
shows the  routing of the  hydrogen  lines  on  the roof of C.oncourse E-F,  the  United  Air 
Lines  Concourse.  The  location is complicated by the  large  ventilator  penthouses  above 
the roof. Details of the  container for the  lines  are  shown  in  figure 41. This  installation 
also is typical  for  the  other  concourses. 
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Table  7.-Hydrogen System Line Elements 

Diameter-m  Diameter-inches 
Type. 

24 16 0.61  0.41 2 GH2 (V-J) 

OD ID OD ID Quant. 

Main 

4.5 4 0.1  1 0.10 1 Waste gas 
4.5 4  0.1 1 0.10 1 GN2* header 

24 16 0.61 0.41 1 LH2 (V-J) 

Branches 
to 
passenger 
gates 
Branch 
to 
cargo 
area 

Branch 
to 
maintenance GN2 

area 

GH2 (V-J) 
LH2 IV-J) 

1 
24 16 0.61 0.41 1 
24 16 0.61 0.41 

Waste gas 4.5 4 0.1  1 0.10 1 

GH2 (V-J) 
24 16 0.61 0.41 1 LH2 (V-J) 
24 16 0.61  0.41 1 

Waste gas 4.5 4 0.1 1 0.10 1 

GH2 (V-J) 14 8 0.36 0.20 2 
1 

4.5 4 0.1  1 0.10 1 
4.5 4 0.1 1 0.10 

Waste gas 

Branch to 
burn  pond GH2 1 17 16 0.43 0.4  1 

"To maintenance area 

Table  8.-Line  Installation Requirements 

Comply  with  FAR  part 77, objects affecting navigable  airspace 
Comply with National  Fire  Protection  Association codes 
Maintain  traffic  on active runways a t  all times 

0 Minimize  disruption to taxiways, aprons, hangars, terminal  buildings 
0 Prevent accumulations of hydrogen-air  mixtures 
0 Provide for  continuous  monitoring  of jacket vacuum 
0 Assure rapid  detection of hydrogen  or  refrigeration losses 
0 Provide for removal of liquid  hydrogen  from  faulty  pipeline 
0 Provide for maintenance 
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Table  9.-Line  Installation  Provisions 

0 No hydrogen line  will be buried  directly  in  the ground 

0 Lines crossing beneath airport  primary surfaces, taxiways, aprons or roadways wil l be installed in tunnel  or pipe gallery 

0 Hydrogen lines located close together wil l be installed in  the same tunnel  or pipe gallery 

0 Minimum clearance around line wil l be 0.45 m (18 in.) to facilitate welding, visual inspection, and other  mainte- 
nance functions. 

0 Line valves, co.mpressors,  and other appurtenances wil l be installed in structures sufficient to  permit inspection and 
maintenance of  all parts. 

0 All tunnels, galleries  and other structures will be positively ventilated to  continuously remove gaseous hydrogen 

0 Flame from leak in one hydrogen line shall not impinge on another line 

0 Liquid hydrogen lines will be installed on a uniform slope of 1 to 1000 down  from  the  aircraft fueling locations to the 
hydrogen storage  area 

0 Clearance wil l be provided in tunnels and pipe galleries for removal and replacement of line sections 

OConcrete pipe gallery (top-opening) 

0 Enclosed tunnel (steel pipe-arch liner) 

6oo I 

I I I I 
2 3 4 5 6 m  

1 I I I 1 I I 1 
6 8 10 12 14 16 18 20 f t  

Width of tunnel or pipe-gallery 

Figure 34.- Tunnel Access 
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Corner radius (Rc) 0.457 m (1.5 f t )  
Corrugations 0.1 5 x 0.05 m  (6 x 2 in.) 
seams bolted Rise 

+. 

1.85 
2.69 
3.33 
3.81 
4.24 
4.72 
5.05 

- 
Span 

m in. 
i 

I 
73 

106 
131 
150 
167 
186 
199 

Rise Area 
No. of 

rn plates f t2  m2 In. 

1.40 

10 113 10.50 113 2.87 
9 93 8.64 103 2.62 
8 78 7.25 95 2.41 
7 61 5.67 85 2.16 
7 43 3.99 73 1.85 
5 22 2.04 55 

3.07 10 131 12.1  7 121 

From: Reference 6, table 1-21 

Figure 35.-Structural Steel  Pipe-Arches 
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Figure 36.- Line  Installation  Configurations 
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Figure  IO.-h'ydrogen Distribution UA L Concourse E-F 
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5.6 GROUND OPERATIONS 

Ground  operations  performed  during  normal  ramp  servicing of the LH2 airplane are 
shown  in  figures 42 and 43 for  turn-around  and  through-stops,  respectively.  They are 
conducted  within  the  ground  times  allotted  to  current  widebody  transports.  Many of the 
functions  are  accomplished  with  existing  equipment  and  procedures.  However  three 
areas  require  special  consideration  due  to  the  unique  characteristics of the  fuel  and  the 
double  deck  arrangement of the  study  configuration.  These  three  areas-fue!ing, 
passenger  loading,  cabin  and  galley  servicing-are  discussed below, following a brief 
description of the  airplane  parking  method  and  general  service  functions. 

Many  approaches  were  investigated  to  find  solutions  to  the  problems posed in  these 
areas,  that  were  compatible  with  airline/airport  ground  operations.  The  selected 
solutions  are  covered  in  this  section of the  document,  with  brief  descriptions of alternate 
solutions  contained  in  appendix C. 

5.6.1 AIRCRAFT  PARKING 

The LH2 airplane  will be parked  nose-in  to  the  terminal,  however a t  some  gates  it  may 
be necessary  to  park  at  an  angle  to  allow  sufficient  clearance  for  ramp  movements.  It 
will dock under its own power, as  is the  present  practice,  and be  moved out by a  tug. In 
order  to  reduce  the  length of the  passenger  loading  bridges  and  the  refueling booms 
mounted on the  building,  the  airplane  will be parked  approximately 4.57 m (15 ft)  from 
the  terminal  building. 

5.6.2 AIRPLANE  SERVICING 

As shown  in  figure 44, the  airplane is serviced by conventional  positioning of the 
servicing  vehicles on the  right  hand  side,  leaving  the  left  hand  side  for  passenger 
loading.  Since  the body has  an  exceptionally  high  ground  clearance of approximately 
3.048 m (10 f t ) ,  compared  to the 2.13 m ( 7  ft)  to 2.43 m (8 f t )  clearance of existing 
widebodies,  the  parking  or  movement of vehicles  under  the body and  wing  can  be  used 
to advantage. 

Evaluation  resulted  in  the,  identification of the following  ramp  services  which  can be 
provided using  conventional  equipment. 

1. Potable  water 

2. Cargo  loading 

3. Lavatories 

4. Conditioned  air 

5 .  Electrical  power,  air  start,  and  air  conditioning  are  services  normally  supplied  by 
the APU. External  connections  for  these  services  will  be  available. 
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5.6.3 FUEL TRANSFER 

Many  concepts  for.  transferring LH2 to  the  airplane  were  investigated.  The  terminal 
mounted boom system at  the  r ight  side of the  forward LH2 tank  was  chosen  as  the  most 
acceptable  arrangement. 

Other  concepts  investigated,  such  as  the  hydrant-to-airplane LH2 transfer  truck,  offered 
versatility  in  parking  the  airplane,  but  added  to  the  congestion at the  ramp. A fixed 
boom system  built  into  the  ramp  reduced  the  congestion,  but  was  expensive  and  limited 
airplane  parking  positions.  These  alternate  systems  are  described  in  appendix C .  

Terminal  Boom Fueling Concept  

As shown  in  figure 45, the  selected  fueling  concept  is by boom from the  terminal 
building.  The boom contains LH2 supply  and GH2 vent  lines  which  connect  to  the 
airplane  at  the  forward  fuel  tank  location.  It  is  controlled by an  operator  in  an 
enclosure at   the  base of the boom, who  guides i t  to  the  airplane  receptacle by means of 
electronic  sighting  controls. 

The  fueling  receptacle  is  located  in  the  right  side of the  forward  fuselage  to  permit  use 
of the  air  bridge by passengers  and crew during  the  fueling cycle. The GH2 vent  line 
and  the LH2 supply  line  remain  connected  to  the  airplane, for recovery of hydrogen 
boiloff,  while  the  airplane  is  parked.  The  height of the  fueling  receptacle  is  
approximately 6.1 m (20 ft)  above  the  ground,  which would be  compatible  with  fueling 
from  a tanker  truck  in  remote  locations. 

The  selected  concept  reduces  the  normal  congestion  caused by ground  equipment  in  the 
ramp  area  and  eliminates  the  potential of damage  to  the  fueling  hookup  system by 
ground  vehicles.  It  was  reviewed by the  airline  subcontractor  and  Chicago  Department 
of Aviation  representatives  and  was  recommended  from  the  standpoint of airline  and 
airport  operations.  Modifications to this  basic  concept,  which  have  merit  but  require 
further  study,  are  contained  in  appendix C. 

LH2 T a n k e r   T r u c k  

Figure 46 shows  a  tanker  truck LH2 fueling  and  vent  recovery  system,  with  remote 
controlled booms  for connecting  to  the  airplane  receptacles.  The  truck  has a capacity of 
56 775 liters (15 000 gal).  Both  the  fuel  tank  and  the  fuel  vent  connect  lines  on  the 
truck  are  insulated. 

The  tanker  truck is used  to  fuel  or  defuel LH2 airplanes  parked at remote  places  such 
as  maintenance  or  cargo  areas.  The  tanker  truck  also  will  be  used  to offload LH2 from a 
disabled  airplane  in  preparation for recovery  operations.  The boom system  is  controlled 
by the  driver of the  truck  and  guided  into  the  airplane  receptacles  by  electronic  sighting 
controls.  The  truck  design  also  incorporates  a  hydrogen  leak  detection  system 
and  an  extinguishing  agent  for  control of fires.  Each  airport  servicing LH2 airplanes 
will  need  the  services of one  or  more of these  trucks.  The  use of the  tanker  truck as the 
principal  means of fueling  would be slow,  expensive  and  would  congest  the  ramp  areas. 
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5.0.4 PASSENGER LOADING-DOUBLE  DECK  BRIDGE 

Figure  47  shows  the  preferred  method of loading  passengers  into  the  upper  and  lower 
decks of the LHz airplane.  The  bridge  is a single  enclosed  unit  with  two  decks  fixed  to 
the  ramp  and  equipped  with  extendable  ends at the  airplane  entry  doors  to  adjust  for 
various  entry  door  positions. 

The  passenger  terminal  must  be  altered  to  establish  the  two  levels  for  movement of 
passengers  into  the  two-deck  loading  bridge.  The  upper  level of the  bridge  will  be 
reached by an  escalator  system or ramp  within  the  terminal  waiting  area.  This  system 
was  recommended by the  airline  subcontractor  for ORD terminal  facilities. 

The  use of mobile  airstairs for loading  passengers at remote  parking  sites would allow 
entry  into  only  the  lower  deck.  The  passengers would be  required to use  the  stairways 
in  the  airplane  to  reach  the  upper  deck  in  this  situation. An airstair  system  to  reach  the 
upper  deck at  8.22  m  (27  ft)  height would require  a  sophisticated  design  which would 
not  adapt to ramp  mobility. 

5.6.5 GALLEY  SERVICE 

Galley  servicing  will be similar  to  the  present  system of containerized  loading  from 
trucks.  However,  since  the  upper deck is 8.22 rn (27 f t )  and  the  lower  deck is 6.09 m 
(20 ft)  above  ground,  there is no existing  equipment  adaptable  to  service  the  galleys. A 
conventional  galley  service  truck  revised  to  reach  the  service  door  levels  is  not 
considered  practical  to  meet  requirements for wind  stabilization at  these  heights. An 
alternate  method,  utilizing  a  stable  lifting  platform  was  selected. 

Figure  48  shows  a  lifting  platform  designed to elevate  galley  containers to the  height of 
the  upper  and  lower  decks.  It is 3.9 rn (12  f t )  wide and  has no chassis  springs,  to  provide 
platform  stability.  It  will  span  both  upper  and  lower  deck  service  doors  without  moving 
the  unit.  The  unit will  be confined to relatively low speed operation  at  the  airport  (no 
highway  usage)  because of its width  and  lack of springing.  It could  be self-propelled  or 
towed into  position.  Galley  containers will be delivered to the  platforms by conventional 
low bed service  trucks  parked  along  side  the  platform. 

The  lifting  platform  is  an  expensive  unit to build,  however, it  can  also  be  used  to 
support  cabin  cleaning  and  cargo  loading.  It would  be the  fastest  method of servicing 
the  upper  deck  galleys. 

5.6.6 CABIN  CLEANING 

As shown  in  figure  44,  the  vehicle  used  to  supply  the  cleaning  crew is parked at the 
left-hand  service  doors  and  will  utilize  the  lifting  unit  as  designed  for  the  galley  service 
operation. 

The  cleaning  operation is accomplished,  in  the  same  manner as is now employed  on 
widebody aircraft,  except  there  are  two  crews  to  handle  the  upper  and  lower  decks.  The 
cleaning  equipment  is  conventional. 
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5.6.7  MAINTENANCE  CONCEPT 

Major  scheduled  maintenance of liquid  hydrogen  airplanes  will  normally  occur at the 
airline  maintenance  base.  The  present  levels of maintenance  currently  accomplished  on 
widebody airplanes at  ORD will  require  changes'  in  maintenance  facilities  only  to  the 
extent  described  in  section 5.4.4. 

Light  maintenance  and  maintenance  inspections will  be  conducted  on the  ramp  a t   the  
same level and  arrangement as for conventional widebody airplanes.  The  crews  will  be 
specially  trained  for  the LH2 airplane  and will  use  equipment  that is designed  to be 
used  on the LH2 airplane. 

5.7 EQUIPMENT,  FACILITIES  AND  TRAINING 

5.7.1 TERMINAL  BUILDING  MODIFICATIONS 

The  terminal concourse must be altered  to  accommodate  the  two-deck  passenger  loading 
bridge, a s  shown  in  figure 47. This  change  will  include  an  additional  ramp or escalator 
to  reach the upper  deck of the two-level  passenger  loading  bridge.  These  provisions  can 
be added t o  the  existing  passenger  waiting  areas  and wrill require  revision to  the roof 
line,  only,  in  the  immediate  area. 

The  terminal concourse  also  must be altered  to  incorporate  the  refueling boom system, 
as shown  in  figure 45. This  change  includes  the boom operator's  control  center  and boom 
support  structure,  mounted as a structurally  independent  unit  on  the  existing  terminal 
wall.  The  fire (or heat)  control  water  spray  system is installed  on  the  building  and boom 
control  center.  The LH2 supply  and GH2 vent  lines are contained  in a vented  channel 
mounted  along  the  edge of the roof of the concourse,  to  avoid  air  conditioning  system 
penthouses.  The  channels  will  not  require  alteration  to  the  concourse  structure. 

5.7.2  MAINTENANCE  HANGAR MODIFICATION 

Since  the  maintenance  hangars at ORD are  used  principally  for  light  and  emergency 
maintenance of widebody airplanes,  plus  programmed  maintenance of some  aircraft 
subsystems  (not  LH2-related),  the  alterations  to  accommodate  the LHz airplane will be 
minimal.  There will be times  when  the  airplane  is  parked  inside  with LH2 on  board, 
therefore, i t  is  necessary  to  have a GH2 recovery  system  in  operation  inside  the  hangar. 
This will  consist of an  extension of the recovery  system  from  the  passenger  terminal 
area.  The  ventilation  system  in  the  hangars  must be  updated  to  have  the  capability of 
changing  hydrogen-contaminated  air  volumes once  every  minute  when  the  hydrogen 
leak  sensing  system  initiates  the  alarm. 

5.7.3  SPECIAL GROUND EQUIPMENT 

Special  equipment  for  ramp  service  includes  the  major  equipment  described  in 
section 5.6, plus  smaller  items  such as spark  resistant  wrenches,  flame  resistant 
clothing  for  some  maintenance  operations,  and  hydrogen  leak  detectors  (portable  and 
stationary). 
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5.7.4 PERSONNEL  AND  TRAINING-MAINTENANCE  AND  OPERATIONS 

Personnel  shall be thoroughly  trained  to  understand  the  properties  and  characteristics 
of liquid  hydrogen.  They  must  understand  the  potential  hazards, how to  recognize 
unsafe  situations  and how to  remedy  them  quickly.  Maintenance  personnel  will be 
thoroughly  familiar  with  hydrogen fire fighting  techniques. 

More study  is needed  on the  techniques of fighting LH2 fires.  Since  the  potential of fire, 
if LHz is  spilled,  is  imminent,  and  the  fire  burns at maximum  intensity  within seconds, 
maintenance  personnel  will  probably be the  only people available  to  control  the  fire. 
Therefore,  they  must  be  well  trained  in  proper  and safe fire  fighting  methods.  This 
training  must be a continuing  function of updating  techniques  and  practices. 
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6.0 ALTERNATE CONCEPT 

This section  summarizes  the  results of an  investigation  into  an  alternate LH2 fuel 
system  concept  which  includes a new  passenger  terminal.  The  purpose of the new 
terminal is to  provide  physical  separation  betweev  the  fueling of LHp-fueled airplanes 
from  those  using JP fuel. 

6.1  CONCEPT  DESCRIPTION 

The  basic  approach  to  this  concept  was  based on the  assumption  that a facility  separate 
from the  current  O’Hare  passenger  terminal would be  provided  to  accommodate LH2 
aircraft.  Since  future  plans for this  airport  include a new  international  passenger 
terminal,  and  since some of the  aircraft  that  serve  international  traffic  are  widebody, a 
concept that  serves both international  and  domestic LH2 aircraft  was  selected  for  study. 
Several  possible  sites  were  discussed  with  the  airport  authority.  A  site  south of Runway 
9R-27L  and  west of Runway  14R-32L, as shown  in  figure  49,  was  selected. 

6.1.1  REQUIREMENTS 

Utilizing  the  concept of a  separate  facility for loading  international  and  domestic 
LH2-aircraft  results  in  the  following  requirements: 

0 Passenger  terminal  accommodating  the widebody domestic  passenger  fleet 

0 Passenger  terminal  accommodating  the widebody international  passenger  fleet 

0 Passenger  terminal  accommodating  the  narrowbody  international  passenger  fleet 

0 Separation of fueling  operations-that  is,  separate  aprons for loading widebody 
airplanes  with  liquid  hydrogen  and for loading  narrowbody  airplanes  with JP  fuel 

0 Segregation of international  passengers  from  domestic  passengers 

6.1.2 SELECTED  TERMINAL  CONFIGURATION 

A  potential  configuration for a new terminal  which  satisfies  the  requirements  shown 
above  is  illustrated  in  figure 50. It  is divided  into  three  parts:  domestic  concourse, 
international  concourse,  and  passenger  services.  A  change  in  passenger  boarding  gate 
utilization is reflected  in  this  concept.  Boarding  gate  space  in  the  existing ORD 
terminal  (and  in  domestic  terminals  generally) is leased  to,  and  dedicated  to  the  use of, 
a  single  airline.  However,  in  this  concept  gates  are  assigned  to  requestors on a  schedule 
demand  basis.  During  congested  periods  when  gate  demand  is  high,  gate  occupancy  time 
is  limited  to  a  specific  time  period. If the  unloaded  airplane  is  scheduled for an  extended 
ground  time before departure,  it is required  to move to a layover  position,  where 
hydrogen  tank  venting  facilities  are  provided. 

The  domestic  concourse is shown  serving  14 LH2 airplanes  which  contain 5600 seats 
(14  x  400).  At  17 650 m2 (190 000 ft2),  this  concourse  has  a  ratio of area  to  available 
seats of 3.2  m2  (34  ft2)  per  seat.  It  is  therefore  ample  to  serve  the  boarding  lounge  area 
requirement of reference 7. The  14 LH2 airplanes  also  are  parked  in  accordance  with 
the  requirements of reference 7. 
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The  international concourse is  a duplicate of the  B-C Concourse  presently  handling  all 
international  passenger  traffic a t  the  existing ORD terminal. It is  shown  serving  four 
widebody LH2 airplanes  along  one  side,  with  the  other  side  accommodating  seven 
narrowbody,  JP-fueled  airplanes.  All  airplanes are parked  according  to  reference 7. 

Traffic  schedules  require gates for  four  widebody and  five  narrowbody  airplanes  during 
a peak  1-hour  period.  The  parking  arrangement  shown  is  adequate  to  the  demand.  Since 
maximum  demand  for  narrowbody  gates  occurs at different  hours of the  day  than  that  of 
widebody, then  theoretically,  the 2 narrowbody  gates  shown  inside  the “Y” could  be 
“swing”  space-equipped  to  handle  either  two  small  or  one  large  airplane at  different 
times. 

The  underlying  objective  for  presenting  this  concept  is  to  provide  for  separation of 
fueling  operations-isolate JP  fueling  from LH2 fueling.  The  terminal  layout  and 
parking  arrangement  shown  accomplishes  that objective by shielding  the  JP-fueling 
apron  with  the projections of the  building.  There is no direct  line-of-sight  between a 
parked  narrowbody  (JP-fueled)  airplane  and a parked widebody LH2 airplane. 

6.1.3  HYDROGEN  LIQUEFACTION AND STORAGE 

The  airport  surface  area  between  the  conceptual  “separate  fueling”  terminal  and  the 
airport  perimeter  road  (relocated  Irving  Park  Road)  is  utilized  for  facilities  required  to 
liquefy and  store  the  hydrogen  fuel.  After  providing  safety  isolation  from the public 
roads  and  nearest  runways,  this  plot  amply  fulfills  the  space  requirement for LH2 
facilities,  and  is  located  adjacent  to  rail  service.  Figure 51 is  a plot  plan  showing  the 
location of these  new  facilities, 

6.1.4  DISTRIBUTION  SYSTEM 

As in  the  baseline concept. all underground  hydrogen  distribution  lines  are  installed  in 
tunnels.  Figure 52 shows the  routing of this  piping  in  the  vicinity of the new  passenger 
terminal. 

6.2 LH2 SYSTEM 

The  fuel  system  serving  widebody  airplanes at  the  alternate  terminal, as well as a t  the 
cargo  and  maintenance  areas,  is  shown  in  figure 53.  The  same  basic  three-line  system  is 
used as in  the  baseline  concept,  with  the  prime  difference  being  that  complete 
separation  between LHp and JP fuel  is  provided. 

6.2.1  LIQUEFACTION AND  STORAGE 

A  schematic of the  a l ternate  LH2 ground  system  is  presented  in  figure 54. The 
liquefaction  plant  and  storage area are  located  to  the  south of and  adjacent  to  the  new 
terminal. 
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Figure !il.-Plot Plan-Alternate Concept 
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6.2.2 DISTRIBUTION SYSTEM 

LH2 supply  and  vent  return  lines are essentially  the  same as the  baseline  system  except 
the  distribution  and  return  lines are considerably  shorter,  with  the  number of hydrants 
and  return  vent  connections  reduced.  A  redundant  line  extends  from  the LH2 pumping 
station to the  end of each  passenger  terminal  branch  line.  This  redundant  line  serves as 
a back-up  system  and  can  be  used as either LHz supply or GH2 return  vent  in  the  event 
the  main  trunk or any of the  branch  lines  must  be  shut down  for  maintenance  work. 
Distribution  system  line  diameters  and  liquefaction  plant  capacity are the  same as the 
baseline  system. 

6.3 GROUND OPERATIONS 

Airplane  servicing  and.  line  maintenance  functions,  normally  accomplished at the 
passenger  gates  during turnar0und;through-stops, would be  carried  out  essentially as 
described  in  section 5.6 for the  baseline  concept.  However,  there  are  two  aspects of 
ground  operations  that would  be  affected.  Both are  related  to  the  passenger  terminal 
side of operations,  rather  than  the  airplane  side. 

Domestic through-passengers  changing  airplanes at  ORD are  required  to  transfer 
between  terminals  when  their  arrival  and  departure  flights  are  in  different  types of 
aircraft  (LHs-fueled  versus  JP-fueled).  This  is  an  inconvenience  to  the  passenger,  even 
if accomplished  via an  underground  rapid  transit  system.  Moreover,  the  airlines  have 
learned  through  experience  that a split  operation of this  type  results  in  lost  patronage. 
Passengers  will  seek  an  alternate  departure  flight  (alternate  airline)  rather  than  be 
inconvenienced by the  transfer from  one  terminal  to  another.  Airlines  operating  out of 
both  terminals would have  to  provide  expedient  baggage  transfer  and  probably  some 
inducement  to  passengers  to  prevent  a  potential  loss of traffic. 

The  alternate  concept, as developed  in  this  study,  includes a terminal  building  tailored 
to  the  requirements of ORD domestic LH? and  all  international  traffic.  It  provides  only 
the  number of gates  necessary  to  accommodate  those  segments of the  traffic. As a 
result,  gates  and concourse areas would be utilized by the  various  airlines  on a demand 
basis,  rather  than by assigned or leased  areas.  This concept of operation  is  undesirable 
from the  airline  standpoint  because of gate  scheduling  problems  associated  with  arrival 
or departure  flight  delays.  It  also  produces  passenger  confusion  and  irritation.  These 
unfavorable  aspects of operation could  be overcome  with  additional  personnel  for  gate 
scheduling  and for  directing  passengershisitors  to  the  proper gates. 
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7.0 ANCILLARY STUDIES 

The  mainstream  study  effort  was  devoted  to  investigation of a set  of factors  combined  to 
produce the  most  feasible  air  terminal  concepts,  considering  overall  airport  and  airline 
operations.  These  factors  included GH2 delivery  to  the  airport,  the  internal  tank 
airplane  configuration,  fuehng  at  passenger  gates  through  an  installed  system  and  the 
assumption of ORD as an  element of a mature LH2 air  transportation  system. 

In  the  following  paragraphs  results of evaluating  the  effects of some  alternate  factors, 
applied  to  the  baseline  concept,  are  reported.  These  include: (1) the  impact of LH2 
delivery  on  the  airport  hydrogen  fuel  system, (2) the  impact of a fleet of external  tank 
airplanes  on  fuel  requirements  and LH2 plant  size, (3) qualitative  analyses of fueling at 
a remote  area,  (4)  fueling by tanker  truck at passenger  gates,  and (5) the  development 
of a potential  scenario  showing  the  impact on ORD of a domestic LH2 air  transportation 
system  during  introduction  and  evolution  into  a  mature  system. 

7.1 LH2 DELIVERY TO AIRPORT 

In  this  alternative  to  the  baseline  concept,  LH2  rather  than  GH2,  is  delivered  to  an 
airport  storage  facility by railroad  tank  cars  and/or  tank  trucks.  The  objectives 
established, for the  baseline  concept  in  section  5.0  were  also  applied  to  this  concept. 
Figure  55  identifies  and  locates  the  major  system  componznts. 

7.1.1  HYDROGEN  SYSTEM  DESCRIPTION 

Figure  56  is  a  layout of the  hydrogen  system.  The  primary  distribution  and  vent  return 
portion of the  system  and  their  operation  are  identical  to  the  baseline  concept  described 
in  section  5.3.3.  The  primary  differences  between  this  concept  and  the  baseline  are  the 
size and  function of the  liquefaction  plant  and  the  capacity  and  facilities  for  loading  the 
storage  tank  farm. 

LH2 S to rage  

Liquid  hydrogen is stored  in  six  spherical  tanks.  The  total  capacity of these  tanks 
(2 176 800 kg (2400 tons)) is equivalent to  a  3-day LH2 fuel  demand  to  account  for  the 
greater  likelihood of supply  disruption  due  to  railroad  or  highway  problems.  Four of the 
tanks  are  maintained  in  a  full  condition to  provide  sufficient  fuel  reserve  in  the  event of 
interruption  in  fuel  shipment  caused by various  reasons.  The  other  two  tanks  are  used 
as active  storage  to  handle  the  daily  variations  in  full  demand  and  vent  gas 
reliquefaction.  Approximately  64 800 m2  (16  acres) of clear  land  is  required  for  the 
storage  facility. 

LH2 Delivery 

Two alternatives,  rail  and  tank  truck,  were  considered  for  delivery of LH2 to  the 
airport. (A third  delivery  method,  by  pipeline  from a n  LHp plant  adjacent  to  the  airport, 
might also be  attractive if additional  markets  developed  in  the  immediate  area-lower 
LH2 costs  might  result  from  the  expanded  operation.  Evaluation of this  potential 
concept was beyond the scope of this  study.) 
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Figure 55.-Fuel System- L H2 Delivery 
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7.1.3 GROUND  OPERATIONS 

Airline  operations at  the  airport  are  identical  to  those  described  for  the  baseline  system. 
A possibly greater  chance  for  hydrogen  delivery  interruption  resulting  from  weather or 
accident  has  been  accounted  for by increased  LH2  storage  capacity.  There  is,  however, a 
possibility for an  airport  shutdown  resulting  from a prolonged railltruck  industry  strike. 
No method  was  found  for  reasonably  counteracting  this  possibility. 

7.2  EXTERNAL  TANK  AIRPLANE 

7.2.1  EXTERNAL TANK AIRPLANE  CHARACTERISTICS 

The  external  tank  airplane  configuration of reference 1 is  shown  in  figure 59. The 
configuration  has a design  maximum  gross  weight of 198  132  kg  (436 800 lb), a 
maximum  payload of 39  917  kg (88 000 lb), a design  range of 10  186  km (5500 nmi)  and 
a cruise  Mach  number of 0.85. The  airplane  has  an  operating  empty  weight of 
121 474 kg  (267 800 lb)  and  carries a total  fuel  weight of 36  742  kg (81 000 lb).  This 
configuration  is  very  distinctive  because of the  very  large  fuel  tanks, 31 m (101 ft) long 
by 4.6  m (15 f t )  diameter,  mounted  over  both  wings.  (Each  tank  is  slightly  larger  than. 
the  fuselage of a  Boeing  737 airplane.) 

This  configuration  was  not  selected to  be the  baseline LH2 airplane  because of i ts  much 
higher  fuel  usage.  For  example,  over  the  short  ranges  which  constitute  most of the ORD 
traffic.  the  external  tank  configuration  requires  almost 4O?C more  block  fuel  and 
produces  over  twice the  vented  GH2.  Because of its  high  fuel  consumption,  analysis of 
this  configuration  was  pursued  only  to  determine  its  impact on ORD  fuel  requirements, 
in the  event  that  the  internal  tank  airplane  was found  to  be  unacceptable  for  technical 
or operational  reasons. 

7.2.2 IMPACT ON BASELINE LH2 SYSTEM  SIZE 

The  fuel  requirements for a fleet of external  tank  LH?  airplanes  was  determined  using 
the  same  technique  discussed  in  sections  4.4  and  4.5.  The  resultant  fuel  requirement  is: 

LHZ EXTERNAL  TANK  FLEET BLOCK FUEL-ORD 

Case 1. Minimum LH2 loaded  for  each 
mission - kg/Day  (tonslday)  750 000 (825) 

Case 2. Tanks topped off for  each 
mission-kg/Day  (tons/day) 815 000 (900) 

7.2.3  OPERATIONAL  CONSIDERATIONS 

The  external  tank LH2 airplane could  be serviced  with  the  same  equipment  designed  for 
the  internal  tank  baseline  configuration;  however,  there  is a high  potential  for  damage 
to  the  external  tanks  from  galley  loaders  servicing  the  upper  deck.  The  external  tanks 
must be  protected  from  damage  due  to  engine  burst,  resulting  in a weight  penalty  which 
would  significantly  degrade  the  performance of this  configuration.  Fuel  tank 
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maintenance  may be somewhat  easier.  The LH, tanks could  be  removed  before  the 
airplane  is placed  in  a  hangar,  thereby  eliminating  a  major  fire  hazard.  There  appears 
to  be  no  other  operational  advantage of the  external  tank  configuration  over  the 
internal  tank  baseline.' 

7.3 REMOTE  FUELING  CONSIDERATIONS 

Remote  fueling is defined  herein  as  a  concept  in  which  fueling  is  accomplished  in  a 
dedicated  area  remote  from  the  passenger  terminal,  before  loading  passengers  and/or 
cargo.  After  fueling,  the  airplane  is moved  to a  passenger  gate,  where  passengers  are 
enplaned  and  other  normal  service  functions  are  performed. 

Two benefits  accrue  to  this  concept.  There  is  much  less  exposure of passengers  and 
ground  personnel  to  the.possibility of a  hydrogen-associated  accident,  and  airport  fuel 
system  costs  can  be  reduced by locating  the  fueling  facility  near  the LH2 storage  area. 

This  concept  was  not  considered  to be valid for ORD because i t  would  completely  disrupt 
the complex  traffic  system at  that  airport. Some of the  reasons for rejecting  this  method 
of fueling a t  ORD are  listed  below. 

ORD is  a  major  hub  airport  with  most of its widebody  traffic  involving 
through-flights;  less  than 10% of the  flights  originate a t  ORD. As a  result,  a  large 
percentage of the  flights  are  restricted to ground  times of approximately 1 hour,  or 
less.  These  short  ground  times would not  be  possible  with  remote  fueling. 

The  towing of LH2 airplanes  across  active  runways, to  and from  a  refueling  area, 
could  not be tolerated a t  ORD. Landing  and  takeoff  frequencies  are  greater  than 1 
per  minute  during  several  hours of the  day.  The two areas  potentially  available for 
a  fueling  station,  that  meet  the  runway  constraint,  are  as  far from the  liquefaction 
plant  site  as is the  passenger  terminal,  thereby  nullifying  any  potential  reduction 
in distribution  system  costs. 

Ground  traffic  (aircraft  and  ground  vehicles) a t  ORD is currently  at  the  saturation 
point,  resulting  in  frequent  delays  in  the  ramp  area,  while  awaiting  taxi  clearance 
to  a  gate.  The  additional  taxiway  and  ramp  congestion,  caused by slowly  towing 
aircraft  to  and  from  the  fueling  area,  would  further  add to  these  delays.  (The 
concept of transporting  several  busloads of passengers  to  and  from  each  airplane 
would  also  be  unacceptable  from  the  standpoint of ground  vehicle  traffic 
congestion.) 

A coastal  airport,  with  a  high  percentage of originating  widebody  flights,  might  be  more 
amenable  to  the  remote  fueling  concept  than  an  inland  hub  airport,  such  as ORD. 
Originating  flights  generally  are  preceded,  at  such  airports, by ground  times of from 1 
hour  to  an  overnight  stay.  Under  these  circumstances,  flight  schedules  might be 
maintained  using  the  remote  fueling  concept,  depending  on  airport  geometry  and  ramp 
area congestion. 
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7.4 TANK  TRUCK  FUELING 

This  concept  is  based  on  the  concept  that  all  fueling of LH2 aircraft  would  be 
accomplished by tank  truck.  The LH2 distribution  system as described for the  baseline 
and  alternate  concepts  would  .be  replaced  by  tank  trucks  shuttling  between  the 
liquefaction  plant  and  the  terminal  areas.  Hydrogen  gas  from  the  airplane  tanks  during 
blowdown, fueling  and  normal boiloff would be  vented  to  the  atmosphere.  This would 
amount  to  about 72 600 kg  (80  tons)  per  day. 

I t  is estimated  that 18 trucks of 56 800-1 (15 000-gal)  capacity would  be required  at  the 
terminal  gates  during  .peak  fueling  demand  time.  An  additional  four  trucks  should 
satisfy  cargo  and  maintenance  area  requirements,  and  eight  additional  trucks would  be 
required to account fol: truck  loading  time,  plant-to-gate  shuttle  time,  and down time for 
maintenance.  A  total of 30 tank  trucks  results. 

This  method of fueling LH2 airplanes  at ORD was  rejected  because: 

The  safety  (and  probably  environmental)  impact of venting 72 600 kg  (80  tons) of 
hydrogen  gas  into  the  O’Hare  atmosphere would  be unacceptable. 

0 The  long  term cost of GH2 lost  in  venting  plus  the  cost of purchase  and  operation of 
the  tanker  trucks woulcl increase  system  operating  costs  substantially,  compared to 
the  system which returns  vented  gas to the  liquefaction  plant. 

0 The  added  ground  vehicle  congestion would  be unacceptable at ORD. This  was 
verified by representatives of the  Chicago  Department of Aviation. 

Although  the  tank  truck  concept of fueling  might  be  suitable at airports  with a low 
volume of widebody traffic,  and  must be available for use  in  maintenance  areas  and for 
emergency  defueling,  it would not be an  acceptable  method for general  fueling a t  ORD. 

7.5 AIR  TRANSPORT  SYSTEM  IMPACT 

Results of the  mainstream  study,  which focused on  the  O’Hare  airport,  provided a basis 
for evaluating  the  broader  implications  that  the  introduction of LH2 would have  on  the 
air  transportation  system.  Several  interrelated  areas of interest become important 
during  an  evaluation of this  nature.  These  include: 

0 Identity of airports  that would  be likely  candidates  for  adapting  to LH2 transport 
operations 

0 Characteristics of LH2 transports  and  ground  support  systems  that  are  critical, or 
that  lend  themselves to initiation  and  buildup  to a fully  functioning  system 
network 

0 Potential  methods by which LH2 transport  operations could develop  from  the first 
LH2 airplane  and  airport  to a mature  airplanelairport  complex  covering  the 
domestic  and  worldwide  route-network 
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a The  relative  timing  involved  to  bring  various  system  elements  to an  active  status, 
considering  needed  research  and  development  effort  and  implementation  periods 

Although  several  scenarios could be  postulated as to how all,  or a portion of, a i r  
transportation could  convert  to  LH2,  there are fundamental  factors  that would  affect 
any  that  are considered. These  include: 

To warrant  serious  consideration,  the  portion of the  air  transport  system  devoted  to 
the  use of LH2 must be large  enough  (in  terms of minimizing  the  impact of cost 
andlor  shortage of JP fuel)  to  attract  the  required  implementation  capital.  This 
implies  that  a  significant  portion of the  total  air  traffic,  in  the  domestic  and  the 
international  fleet/route  network  handling  that  traffic,  must  ultimately be 
postured  to  operate  using  LH2.  A  large  portion of the  airlift  capacity,  and  the 
several  airports  serving  the  passenger,  cargo  and  transport  traffic  must  therefore 
be  included  in  the  mature LHp system  complex. 

A reasonably well coordinated  plan of implementation would be  necessary  because 
of the  financial  commitment  and  the  long  lead  time  required  to  provide  the  fuel 
supply,  and  airport  provisions  (over  wide  geographical areas), as well as the 
aircraft.  Because of these  factors,  it is doubtful that  a single  operating  airline 
would unilaterally  adopt LHp. Rather, a joint decision  between  the  major  airlines 
to proceed in  that  direction, or a government policy  to support  such a decision, 
would  be  involved. In  either  case,  some  form of system  planning  and  direction 
would be involved. 

I t  would  not be practical  to  delay  start of operations  until  fuel  sources  and  the LHz 
aircraft  fleet  were  available  on a total  system  basis.  Again,  lead  time  for 
conversion of the  airport  facilities,  together  with  reasonable  aircraft  production 
rates.  must be taken  into  account.  These  factors  suggest  that  the  implementation 
concept  should be based  on  a gradual  growth  that is time-phased to a schedule 
consistent  with  facility  lead  time  and  airplane  production  rate. 

As a means of making  a  preliminary  evaluation of the  several  areas of interest, a 
limited  study  was  conducted  within  the  framework of the  fundamental  factors  discussed 
above  Recognizing that  several  scenarios could be considered,  only  one  was  evaluated 
based on  the following  ground  rules: 

A  total  system  planning  approach 

Initial  startup at two  airports (ORD and SFO, selected  arbitrarily  because  one is 
on  the  west  coast  and  the  other a current  major  eastern  hub) 

Two airports  per  year  added  to LH2 network 

Airports  having LH2 facilities  serve as home  base  for LH2 aircraft  during the 
system  growth  period 

Airplane  production  buildup  to  5lmonth 

Airplanes  assigned  to  traffic  on the basis of 1975  widebody  operations 
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0 LH2 airplanes  operated  over  existing  widebody  route  network 

0 Truck LH2 fueling  capability  provided at non-LHp airports  to  provide  incremental 
fuel  required for airplane  to  return  to  normal  home  base, as normal  or  emergency 
operation 

0 1@ hourdday  utilization of LHz airplanes 

7.5.1 SYSTEM PLANNING 

The  program  to  convert  from  petroleum  to  hydrogen  fuel would be  a  very  large 
undertaking  and  in  the  national  interest. I t  is  therefore  assumed  that  a  system 
management  function would be established  to  integrate  the  development of hydrogen 
production  and  transportation  systems,  the  development of transport  aircraft  and  the 
development of airport  facilities.  These  major  system  elemmts  would  be  developed  to  a 
master  schedule  to be operational  on  a  predetermined  date.  This  date,  shown  in 
figure  60, for the  initial  two  airports,  coincides  with  the  airplane  “certification”  date.  It 
represents  the  date on which  airline  service Nould begin  in  the U S .  with  LH2-fueled 
aircraft. As discussed  in  section  7.5.2.  initial  service would  be out of two  airports,  with 
additional  airports  coming  “on  line”  during  succeeding  years.  Development  schedules 
for these  additional  airports  and  their  system  elements would  be shorter,  and would  be 
time-phased to coincide  with  their  operational  dates. 

The  schedule of figure  60  provides a 16-year  period for development of the  hydrogen 
supply.  This  includes  planning,  construction  and  checkout of the  hydrogen  production 
system  and  the Hz transportation  system.  The  airplane  program  could  be  initiated two 
years  after  beginning  the Hz supply  program.  It  includes  parallel  technology  and 
concept  development  efforts, fo!lowed by  prototype  DDT&E.  Prototype  test  and 
evaluation would include  both  flight  test  and  operational  feasibility  testing.  (Flight  and 
operational  feasibility  testing would  be conducted  separate  from  scheduled  airline 
operations.  The  limited  fuel  quantities  required would  be provided by railhank  truck 
delivery.)  The  production  program  commences  upon  completion of flight  test  and  leads 
to certification  (initial  delivery  to  an  airline)  17  years  after  total  hydrogen  program 
initiation. 

7.5.2 INITIAL  OPERATIONAND GROWTH 

The  airport  on-site LH12 facilities  require  about  12  years for planning,  construction  and 
checkout.  Operational  readiness of the first two  facilities, ORD and  SFO, would coincide 
with  airplane  certification  date.  Installation of LH2 I \.stems at  other  major  airports, at 
a  rate of two per  year, would  follow. Installation prior:?;ies would be  based on  widebody 
traffic and  distance  from  Chicago  and  San  Francisco.  A  suggested  sequence  that would 
accommodate  the  growing  geographical  coverage, as shown  in  figure 61, is: JFK & LAX, 
HNL & IAD, ATL & DFW,  SEA & MIA, DEN & ANC. (These  12  airports  account  for 
approximately 9Wi of the  total US. current widebody operations.) 

Operations  from ORD and SF0 would be  over  essentially  the  same  route  system 
currently  used.  This  would  be  accomplished  by  taking  advantage of a full  tank 
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philosophy  each  time  the  airplane  departed  from ORD or SFO. As  indicated  previously 
(figure 11). the LHZ airplane  incurs  considerably  less  penalty  than  one  using JP fuel 
when  operated  in  this  manner.  Incremental  fuel  required  to  return  to  home  base would 
be  provided  by rail/tank  truck  delivery  during  the  periods  when a n  LH2 capability  was 
being  implemented at  other  airports. 

.Airplane  delivery  schedules,  typical  for  large  widebody  aircraft, are shown in, figure 60. 
Deliveries  based  on  the  intermediate  production rate of 5/month,  total  28  at  the  end of 
the  first  year of service  and 88 at  the  end of the second year. 

As  the  number of airports  capable of handling LHZ fueled aircraft  increases, a portion of 
the  fleet is allocated  to  each  airport  proportional  to its 1975  'widebody  traffic.  The  fleet 
distribution  during  the first 8 years of introduction is shown  in  table 10, and  in 
figure 62. Airports  added at   the   ra te  of 2lyear  for  the first 6  years would  provide 
geographical  coverage of U.S. domestic  traffic  (including  Hawaii  and  Alaska).  It  is 
logical  to  assume  that  major  foreign  airports  would come into  the  picture  about  this 
time,  and  that  system  expansion  beyond  the  sixth  year  would  be  predominantly  foreign. 

By the  end of the  eighth  year  84 LHZ airplanes would  be flying ORD traffic.  This would 
represent  a  mature  operation  in which  84 airplanes  handle  the  112  daily widebody 
flights  out of Chicago. A detailed  analysis of airplane  scheduling, by tail  number,  in  the 
Chicago  route  structure,  was beyond the scope of this  study. 

7.5.3 ORD  OPERATIONS  DURING GROWTH PERIOD 

During  the first year of operation  the  28  airplanes  in  service  (table  10  and  figure  62) 
are  provided LH2 fuel a t  two airports, ORD and SFO. On  the  basis of 1975  widebody 
operations  at  these  airports.  19  airplanes would  use  ORD as  their  primary  fueling 
source  and  nine  airplanes  would  use SFO. The  routes  served by the  small  initial  fleet 
would be selected  to  produce  maximum  utilization  (to  minimize boiloff losses) 
considering  the  temporary  fueling  limitations  during  the  system  growth  period.  Some 
emergency  fuel  should be available  at  remote  airports  during  this  period to take  care of 
problems  resulting from unscheduled  maintenance.  This  could be  provided by tank 
trucks which  would later be utilized for certain  fuelingldefueling  operations  when  those 
airports become active LH2 airports.  (This  may  require  limited  expansion or additions 
to current LH2 production  capability at strategic  locations  around  the  route  network, 
that  are  remote from the  initial  home  base  airports.) 

Initially, LH2 aircraft would operate  with  full  tanks  when  departing  from ORD. 
Assuming  10  hourslday  utilization  per  airplane,  each  airplane  would  require 
approximately  22 680 kg  (25  tons)  per  day of LH2 block  fuel,  or a total  daily  fleet block 
fuel of 430  920  kg  (475  tons),  provided by  ORD at the  end of the first year.  In  addition, 
heat  losses  in  the LH2 ground  system  and  aircraft raise the  total  liquefaction 
requirement  to  466  300  kg  (514  tons)  per  day, as shown below: 

. 

airplane block  fuel (475  Tlday) 430  920  kglday 
airplane cooling  losses (20) 18 144 
ground  system  cooling  losses (19) 17 237 

Total  Liquefaction  Requirement  (514  Tlday)  466  300  liglday 
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Table 70.-L H;, Fleet Distribution  During System Introduction 

Yrs of operation 
Total  fleet f 
" 

Airport 

ORD 
SF0 

JFK 
LAX 

HN L 
IAD 

ATL , 
DFW 

SEA 
MIA 

DEN 
ANC 

W /B 
Fltslday 

112 
53 

90 
112 

43 
9 

47 
24 

35 
33 

28 
10 

(est.) 

t 
1 8 4 1  5 I 6 1 7  2 1  3 

28 I 88 I 148 I 208 I 268 I 328 I 388 I 448 

"/o Fleetho. aircraft per airport 

68%/19 
321 9 

31%/27 
1411 2 

25/22 
31/27 

27%/40 
13/19 

21/31 
27/40 

10115 
21  3 

23%/48 
1 1 123 

1 813 7 
23/48 

9/19 
21 4 

1012 1 
511 0 

20%/54 
9/24 

16/43 
20154 

8/22 
21  5 

812 2 
411 1 

611 6 
611 6 

19%/62 
9/30 

15/49 
19/62 

7/23 
21 5 

8/26 
411 3 

611 9 
611 9 

511 5 
21 5 

19%/73 
9/35 

15/59 
19/73 

7/28 
21 6 

813 1 
411 6 

6/23 
6/23 

511 8 
21 6 

19%/84 
9 140 

15/68 
19/84 

7/32 
21 7 

8/35 
411 8 

6/25 
6/25 

512 1 
21 6 
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The ORD facility  defined  during  the  mainstream  study  includes  three 242  222 kg 
(267 tons)  per  day  liquefication  modules  when  fully  implemented. As shown  in  figure 63, 
with  two of the  three  modules  on-line,  the  liquefaction  demand at the  end of the first 
year  could be met  with  an 18 144 kg (20 tons)  per  day  excess  for  contingencies. 

By year-end of the  second  year, 27 airplanes  would  depend  upon  ORD  for  fuel. 
Continuing  the  first-year  fueling policy (no LHp fueling at other  airports),  airplane 
block fuel would increase  to 675 tonslday.  Cooling  losses  would  increase  to 43  638 kg 
(47 tons)  per  day  for a total  liquefaction  demand of 655 000 kg (722 tons)  per  day.  At 
this  time  the  three  module  plants would  be operating  at  nearly  design  capacity. 

During  the  third  year,  with  six  airports  capable of providing LH2, the  fueling policy 
would phase  into  the  normal  airline  practice of basing  fuel  load  on  flight  length 
(considering  other  factors,  such  as  fuel  availability,  fuel  price  and  scheduled  ground 
time at destinations).  At  this  time  the  six  airports  with LH2 would provide  refueling 
capabilities  on  the  east  and  west  coasts  and  Honolulu,  in  addition  to  Chicago.  The 
demand  for  full  tank  operation  from ORD would  be  progressively  reduced  as  these 
additional  airports become a functional  part of the LH2 system.  Coverage of the 
domestic  route  system  with  strategically  located  fuel  sources would be  essentially 
completed by the  sixth  year,  with  the  additions of Atlanta,  Dallas-Fort  Worth,  Seattle, 
Miami,  Denver  and  Anchorage.  Although  the scope of this  preliminary  study  did  not 
permit  detail  evaluation,  it  is  expected  that  the  characteristics of their   startup 
operation would  be similar  to  that  for  Chicago  (ORD). 
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Figure 63.--LH2 Fuel Demand at O R 0  
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7.5.4 AIR  TERMINAL  SYSTEM  COST  IMPACT 

Of the  airports  considered  candidates  for LH2 operations,  six  were  selected as having 
sufficiently  differing  characteristics  to  justify a cursory  cost  comparison  with  the 
baseline  concept at O'Hare.  Table 11 shows  the  comparison of major  physical 
characteristics  and  cost  elements of ORD, J F K ,  LAX, ATL, HNL, SEA,  and MIA. The 
daily widebody departures  were  obtained  from  reference 4. The  distance  flown  was 
estimated  from  the  general  route  structure  peculiar  to  each  airport  and  weighted,  for 
purposes of determining block fuel  requirements, by the  stage  length,  e.g.,  shorter  stage 
lengths  receive  heavier  weighting  due  to  an  increase  in  fuel  required  per  mile  flown. 
The  daily  fuel  requirement of the  airports  and  the  plant  size  were  scaled  from  the 
baseline by the one power and  the 0.7 power,  respectively, of the  daily  weighted 
distance  flown. 

The  capital  cost  elements of the  selected  airports  were  also  scaled  from  the  baseline 
O'Hare  facility.  The  major cost elements  (hydrogen  system,  airport  facilities  and  ground 
operational  equipment)  were  broken down into  subelements so that  approximate  scaling 
could be effected,  e.g.,  the  hydrogen  system  was  scaled  from  the  baseline by way of 
required  plant  capacity,  whereas  the  distribution  system  was  scaled  via  the  required 
line  length  and  the  diameter  required  to  meet  respective  peak  fuel  demands. 

Since  the  dominant  capital  cost of the  airport  liquefaction  and  distribution  system is the 
liquefaction  plant  itself,  it is understandable  that   the  total   capital   investment 
quantities  listed  in  table 11 compare  in  a  fashion  similar  to  that of the  fuel  required for 
the  various  airports. 

Table 7 1 .- L H2 Airport Conversion  Comparison 

Daily  widebody departures 

Daily weighted  distance flown 
1000 km 

( 1  000 nm) 

Fuel required 
1000 kg/day 
(tons/day) 

Plant size 
1 000 m2 

(acres) 

Land  acquisition 

Capital cost elements 
Hydrogen system-$M 

Airport facilities-$M 

Ground  operational  equipment-$M 

Total capital investment-$M 

ORD 

112 

272 
(1 47) 

726 
(800) 

101 
( 25) 
None 

436 
23 
10 

- 

JF K 

90 

- 

394 
1213) 

1052 
(1160) 

129 
( 32) 
None 

536 
23 
12 

57 1 - - 

LAX ATL HNL 
112 47 43 

" 

39 1 93 239 
(21 1 )  ( 50) (129) 

1043 245 635 
(1150) (270) (700) 

129 49 93 
( 32) ( 12) ( 23) 
None None Fill 

521 209 355 
21 10 9 
15 7 7 

35  33 

49 40 
( 12) ( 10) 
None None 

'213 176 
9 13 
4 5 

" 

" 

226 194 
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A direct relationship  between  total capital investment  and  fuel required is not seen, 
however, due to the fact that, in  the range considered, plant  size enjoys economics of 
scale, i.e., doubling plant  size  results  in  less  than double the  cost. 



8.0 CONCEPT APPRAISAL 

An  overall  appraisal  to  determine  the  impact of introducing a major  change  to  the air 
transportation  system  (such as introduction of LHp to a portion of expected  operations) 
entails  multiple areas of interest. Individually  and collectively, the  airports  that would 
be  involved  constitute  one of those areas. The  airport complex existing  in  the  United 
States  provides  very  important  functions  in  our  society.  It  constitutes the link  between 
people  and  cargo  that   must  be  transported  and  the  operating  airl ines  which, 
competitively,  provide  that  transportation.  (In  reality,  this  extends  beyond  the  borders 
of the  United States into a global  air  transportation  system.)  Additionally,  individual 
domestic  airports are a vital  part of their local  environment.  A  major  change  to  the 
characteristics of an  individual  airport  can,  therefore, produce or  reflect  changes  in  the 
global  transportation  system  and local  communities  adjacent  to  airports. 

This  exploratory  study  concentrated  on  only  one  airport of the domestic a n a  loosely 
defined  global  system-the  O’Hare  airport at  Chicago.  Considering  the  above  comments, 
results of the  study  provide  the  following: 

0 Relatively  firm  data for appraisal of the  technical  and economic  impact  on the 
airport  and  airline  operations  at  the ORD airport 

0 Some  quantitative  data,  and a base for qualitative  evaluation of the  impact  on  the 
people,  (community)  and  services,  in  the  immediate  vicinity of the ORD airport 

0 Limited  insight  into  the  potential  impact of LH2 on  other  potentially  affected 
domestic  airports,  the  domestic  air  transportation  system,  and  to a very  limited 
extent,  the global  system.  (The  global  system is vitally  important  since LH2 best 
adapts  to  large  and  long-range  aircraft.  Results of a cursory  examination of this 
subject  are provided  in  section 7.5. It  should be the  subject of more  detailed 
evaluation  before  firm  conclusions  are  drawn  relative  to  the  adoption of LHZ, or  
other  alternative  fuels.) 

The following analyses  were developed  with the above  considerations  in  mind.  and 
apply to the specific situation  at ORD, which  in turn  generally  applies  to  other  major 
domestic  airports  and  some  global  airports. 

Economic  impact  can  be  reflected  in  different  fashions,  depending  on  the policy and 
procedures followed by the  government  and  private  organizations  involved  in  each 
locality,  or  region.  In  this  study,  both  public  and  private  financing  methods  were 
considered.  Undoubtedly,  several  other  options  would  be  open  to an  undertaking of this 
magnitude. 

8.1 TECHNICAL APPRAISAL 

The  study  provided  the  opportunity  to  identify  and  define  the  major  technical  design 
and  installation  characteristics of the  liquefaction,  storage,  distribution  and  airplane 
fueling  portions of a n  LHZ system. No basic  flaws  were  found  that  would  undermine  the 
technical  feasibility of the  baseline  system concept.  All  technical  problem areas would 
appear  to  be  responsive  to  straightforward  .engineering  solutions  and  productive 
research  and  technology  advancement  efforts.   Those  efforts  should  emphasize 



approaches  that  minimize  implementation  and  operations  costs.  Future  decisions 
regarding  exercise of the  option  to  use  LH2  should,  therefore,  largely  depend on 
economic rather  than  technical  considerations. 

The  technical  characteristics of the  baseline  dual-fueling  concept  are  compatible  with 
the objective of allowing  commercial  airlines  to  operate  their  total (JP and LH2-fueled) 
fleet  on a closely-coupled integrated  basis.  It  also  meets  the  objective of not  permitting 
uncontrolled  release of hydrogen on the  airport. 

The  previous  analysis of the  baseline  concept  fuel  requirements  (table 1) indicates  the 
allocation of LHp produced by a 725 760 kg/day (800 ton/day)  liquefaction  plant 
capacity.  The  allocation  includes  an  allowance of 544  320  kglday (600 tonslday)  for 
usable block fuel  and 80 740  kglday (89 tons/day) for airplane  tank  conditioning  and 
boiloff venting.  An  additional 81 648 kglday  (90  tonslday)  is  provided  for  demand 
variations  that  occur  because of airplane  scheduling  peaks.  Losses  due to thermal 
aspects of the  ground  installation  amount  to  only 19 051  kg/day (21 tonslday).  Thus 
overall  productivity of the  ground  system  is 97.4%. 

The  productivity is actually  greater  since  the  gaseous boiloff is at low temperature 
when  returned for reliquefaction-and  does  not  require a s  much  power  to  reliquefy as 
the  warm GH2 delivered  to  the  liquefaction  plant. 

Review of stutiy  results  with  the  Chicago  Department of Aviation  revealed no 
significant  exception to the  facilities,  methods or  procedures  defined  during  the  study. 
The  land  area  required for the  liquefaction  and  storage  facilities  is  available.  Current 
construction  techniques  permit  the LH2 distribution  system  to  be  installed  in 
compliance  with  their  ground  rule  that  “Operations  on  runways  and  taxiways  shall  not 
be disrupted.”  Some local disruption would occur at  gate  areas,  however,  which would 
impac t   a i r l i ne   r a the r   t han   a i rpo r t   ope ra t ions .   The   Depa r tmen t  of Aviation 
representatives  indicated  that  their police, fire  department  and  general  housekeeping 
functions would only be affected  because of additional  personnel  training.  They  foresaw 
no major  impact on airport  security. 

Of the  major  utilities  serving  ORD,  the  electrical power demand for liquefaction  and 
distribution  (approximately  350 MW) would present  the  largest  impact.  Coordination 
with  The  Commonwealth  Edison  Company of Illinois  revealed  that  a  load of tha t  
magnitude could be  accommodated  providing  proper  lead  time and  planning  preceded 
the  period of implementation.  The  demand on other  utilities  such  as  water  and  sewers 
would  be nominal,  considering  the  current  provisions  in  the  local  industrialized  area 
adjacent to ORD. 

Environmental  impact on the  community  adjacent  to ORD should  not  present  severe 
problems.  It  is  quite  possible  that  the  community  would  welcome  the  system 
introduction if it  were  preceded by proper  public  relations  regarding  the  non-pollution 
aspects of LH2 and  its  contribution  to  alleviate  energy  problems  in  this  country. 

The LH2 system  design  relies  heavily  on  technology,  design  and  procedures  that  have 
been proven  reliable  during  the  space  program  and  in  the  industrial  use of LH2  and 



other  cryogens.  Although  no  basic  current  technology  limitations  were  found  to  preclude 
implementation of a workable LH2 fueling  system,  several  items  were  identified  that 
warrant  research  and  technology  advancement  to  enhance  the  safety,  economics  and 
operational  features of the  system.  Significant  items  in this respect  are: 

0 Airplane  servicing 

0 LH2 system  efficiency  and  control 

Specific recommendations for action to be  taken  on  the  above  items  are  included  in  the 
research  and  technology  recommendations  section.  In  addition,  the  double-deck 
airplane,  used as a focal point  for  this  study,  may  require  specialized  service  equipment. 
This is, however,  more of a characteristic of double-deck  airplanes  than  being  unique  to 
LH2 transports. 

8.2 OPERATIONAL  APPRAISAL 

Day-to-day  operations at a major  airport  such  as ORD primarily  involve  two  major 
organizations,   the  airport   authority  and  the  several   operating  airl ines.   Both 
organizations  serve  the  public, who depend  on  those  organizations to provide  the 
necessary  facilities,  equipment  and  procedures  needed to fulfill  their  travel  desires  in  a 
safe  and  economical  manner.  The  introduction of  LH2 would impact  the  two  primary 
organizations  in  different  ways  during  three  significant,  sequential  time  periods, 
following a commitment  to  convert  part of the  transport  fleet  operations  to LH2. These 
periods are  system  implementation,  operational  introduction,  and  full  scale  operations. 
Appraisal of the  impact  predicted  during  each of the  three  periods follows: 

0 System  Implementation  Period: 
Other  than  financial  arrangement  and  planning  implications  involving  both 
organizations,  and  the  physical  construction on airport  property,  the  airlines would 
experience  a  minor  impact  during  this  period.  Construction of the  facilities could 
proceed without  general  disruption of routine  airport  activities.  Each  airline 
converting  to LH2 would experience  disruption  while  the  fueling  system,  and 
changes to specialized  passenger  loading  provisions for the LH2 airplane,  were 
installed.  It  should be possible to limit  this  disruption  to  a  small  number of gates 
at any  given  time-in  the  same  manner  that  many  existing  improvements  have 
been  made.  Changes  in  the  maintenance  areas,  such as improved  ventilation, 
should  also be accommodated  without  significant  disruption.  Required  additional 
training of airport  and  airline  personnel  should be completed  during  this  period. 
Arrangements  should  also  be  made for obtaining  maintenance  and  servicing 
equipment for specific  LH2  transports. 

0 Operational  Introductory  Period: 
Again  the  airlines would experience  the  only  significant  impact  during  this  period, 
starting  with  delivery of the first LH2 transport.  Evaluation  indicates  only  one 
major  difference  would  exist,  when  compared  to  a  new  large  conventional 
transport;  namely,  that  upon  docking,  the LH2 transport would remain  connected 
to  the  terminal  fueling  facilities  throughout  the  period  it is position’ed at the  gate. 
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. . _. . . . .. . - 

Assuming  the  study 400 passtmger  transport  configura'tion, all ground  movements 
of the  airplane at the  airport  should  be  very  similar  to  those of the model 747. 

The  dual  fueling concept  will permit  flexibility of gate assignments.  Many of' the 
current  ramp  service  operation  procedures  and  equipment  will be adaptable. 
Assuming a double-deck  configuration is necessary.  operations  such as galley  and 
cabin  servicing,  and  passenger  loading  will  require new or modified  equipment. 
Proper  training  and  awareness of the  ground crew (through  training),  can  permit 
the  turn-around  operation  to proceed  in a safe  and rr.liable manner-not yrt!atly 
different  from  current  operations. 

The  importance of the  fueling crew cannot be  over-emphasized. They must bt: 
adequately  trained,  and  must  understand  thr  fueling  system,  the  limitations of its 
operation  and  the  .procedures  to follow in  case of a malfunction.  Details of the 
fueling  function  and  the  implicatjon on training.  sclection  and  makeup of the 
fueling  crew  deserve  detail  c~valuation.  During  this  introductory pclriod. the 
"operational  bugs"  present  in  any new transport. would be worked out,  primarily 
by the  airlines  and  the  airframc  manufacturvr. No significant  change  in  the  role of 
the  airport  authority is foreseen. unless  it  should  assume  responsibility for 
operation of the  ground  portion of the LH, fueling  system. 

The LH, ground  fueling  system  operation  will  be a critical  function  during  this 
period. I t  will be possible  only  to simulate  operational  problems  prior  to  this  time. 
Operational  bugs  will  have  to  be  worked  out.  Again, a highly  qualified LH, system 
operating  crew  will  be  required  that  is  fully  familiar  with  the  plant,  storage  and 
dis'tribution  system  facility  and  its  operation. 

Introduction of additional  aircraft, by several  airlines, will  benefit  from  the 
procedures that   are  developed during  the  introductory  period,  As  indicated  in 
section 7.5,  the mode of operation at  initial LH, airports could change  during  this 
period  when the  overall  domestic  (and  global  system)  is  adapted  to LH,. Assuming 
that  ORD is  one of the  initial  airports,  this  should  not  change  the  basic  roles of the 
airport  authority,  the  airlines  or  other  involved  organizations. 

0 Full  Scale  Operations 
As the LH2-fueled  fleet  grows  to a mature  status,  the  only  foreseeable  impact on 
ORD would  be due  to  the  increased  size of individual  transports  that  make  up  the 
widebody fleet. Gate  spacing  and  apron  operations  may  be  constrained by the 
present  facilities.  Some  limitations now exist  in  accommodating  current widebody 
airplanes at  individual ORD terminal  facilities.  This  varies  from  airline  to  airline 
and  may  require  re-allocation of leased  areas or expansion of terminal  facilities. 

In  summary,  conversion of a portion of the  fleet  to LH2 fuel  and  provisioning of the 
necessary  fueling  facilities  does  not  present  insurmountable  operational  problems.  This 
conclusion  applies  only  from the  standpoint of implementing  the  concept  within  the 
constraints of the  contract  Statement of Work. It  also  ignores  the  total  system economic 
considerations  involved.  Whether  this  conclusion  would  hold  after  consideration of 
implementation of the  total  fleetlroute  network as it would in  turn  affect ORD, remains 
open  for  further  evaluation. 
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8.3 ECONOMIC APPRAISAL 

The  economic  appraisal  consisted of aggregating  the  individual  equipment  and 
construction  cost  estimates  (1975  dollars)  to  arrive at  the  total  capital  investment 
required  for  the  construction of each  candidate LH2 facility at O’Hare  airport.  With  the 
total  capital  investment  figure as a  base,  it  was  then  possible to estimate  periodic  costs 
and  conclude  the  estimated  annual  cost  to  the  airlines of the  required LHz fuel 
excluding  the  cost of electrical power and  the  hydrogen  delivered  to  the  plant. 

8.3.1 CAPITAL  INVESTMENT  DETERMINATION 

In  an  attempt  to  achieve  high  credibility  in  the  cost  estimates,  several  representatives 
of the  equipment  manufacturing  and  construction  industries  were  consulted.  Included 
were  Air  Products  and  Chemicals,  Inc. for several  items  within  the  plant,  storage  and 
distribution  systems;  Ingersoll-Rand Co. for pumps;  Metal  Bellows Co. for pipes; Armco 
Steel Co. for tunneling;  and  Jetways  (an  affiliate of Stanray  Corp.) for skybridges. 

The  items  found  to  have  the  greatest  impact on the  cost of the  facility  are  required 
plant  capacity,  required  storage  capacity,  length  and  extent of the  distribution  system, 
and  the  number of passenger  gates  required.  Plant  capacity  is  dictated by the block fuel 
requirements of the  airplanes  serviced.  Storage  capacity is dictated by block fuel 
requirements  and  the  state of the  hydrogen  delivered to the  airport  (liquid  or  gaseous). 
The  length  and  extent of the  distribution  system  is  dependent  on  the  location of the 
plant  with  respect  to  passenger  and  cargo  terminals  and to the  maintenance  hangars. 
The  number of passenger  gates  is  dictated by the  number of daily  widebody  departures. 

Table 12 contains  the  buildup of the  major  cost  estimates of the  baseline  and  alternate 
concepts as  well as those for the  effects of utilizing LH2 rather  than GH2 supply,  and 
the  use of the  external  tank  airplane  configuration.  The  following  major  factors 
pertinent  to  the  methodology  used  were  applied  during  the  economic  appraisal. 

Liquefaction  and  Pumping  Facility-costs provided by Air  Products  and  Chemicals, 
1nc.-Included  in  this  category  are  costs for plant,  equipment,  interest  during 
construction,  start  up  capital  and  working  capital.  These  costs enjoy economics of 
scale,  i.e.,  doubling  plant  capacity,  results  in  less  than  double  the  cost. 

Master  Control  System-cost  estimated at 1% of the  cost of the  Storage  and 
Distribution  Systems. 

Storage  System-costing  includes  tanks,  valves,  distribution  line,  etc.,  with  the 
dominant  cost  attributable  to  the  storage  tanks. 

Distr ibut ion  System-cost ing  includes  dis t r ibut ion  l ines ,   valves ,   pumps,  
compressors,  tunnels,  ventilation  systems,  etc.  The  dominant  cost is khat of the 
distribution  lines,  particularly  the 40.6 cm (16 in)  ID  vacuum-jacketed  lines.  The 
distribution  system costs for the  alternate  concept are less  than  that of the  

I19 



Table  12.--Capital  Investment Summary 

(Costs in 1975 $1 

Concepts  Trades 

LH2 External 
Baseline Alternate Deliverv Tank confia. 

Physical characteristics 

Hydrogen delivery state 
Fueling concept 
Aircraft tank configuration 
LH2 required capacity-1000 kg/day 

Aircraft  block  fuel required-1000 kg/day 
(tons/day) 

(tondday) 

Capital cost  elements-$M 

i-lydrogen system-$M 
Liquefaction and pumping facility 
Master control system 
Storage  system 
Distribution system 

Airport facilities-$M 
Passenger loading bridges 
Terminal refueling booms 
Passenger terminal  modifications 
Maintenance  hangar modifications 

Ground operational equipment-$M 
Tanker truck and boom systems 
Galley and cabin service lifting  platforms 

Total capital investment-$M 

GH2 
Dual 

Internal 
726 

(800) 
544 

(6001 

300.00 
1.34 

32.92 
101.29 

12.00 
4.20 
2.00 
4.80 

2 .oo 
8.00 

468.55 

GH2 
Separate 
Internal 

726 
(800) 
544 

(600) 

300.00 
1.20 

32.92 
87.55 

5.40 
2 .oo 
0 

4.80 

2 .oo 
8.00 

443.87 

LH2 
Dual 

Internal 
100 

(1  10) 
544 

(600) 

85.00 
1.51 

49.42 
101.29 

12.00 
4.20 
2.00 
4.80 

2.00 
8.00 

270.22 

GH2 
Dual 

External 
1089 

(1 200) 
816 

(900) 

400.00 
1.50 

48.53 
101.29 

12.00 
4.20 
2 .oo 
4.80 

2.50 
8.00 

584.82 



baseline  concept  primarily  due  to  shorter  line  lengths  made  possible by closer 
plznt-terminal  proximity  and  fewer  passenger  gates. 

0 Airport  Facilities-based  on 40 passenger  gates  for  the  baseline  and  trade 
configurations, 18 passenger  gates for the  alternate  concept  and  two  cargo  gates 
and  six  maintenance  hangars  for  both  concepts  and  both  trades.  Passenger 
terminal  modifications  were  not  included  in  the  costing  for  the  alternate  concept as 
it is  assumed  that  the  initial  terminal  construction for this  concept would  be 
compatible  with  the  double-deck  passenger  loading  bridges. 

0 Ground  Operational  Equipment-the  number of tanker  trucks  was  estimated  from 
the  number  required  to  fuel/defuel  an  airplane  in a reasonable  time  period,  with 
spares for the fuel “loop” and  for  maintenance down time. 

8.3.2 ANNUAL COST  DETERMINATION 

The  airport,  the  operating  airlines  and  probably  the  chemical  industry, would be 
involved  in  the  relatively  large  financial  commitments  necessary to implement  the LH2 
system on the  airport.  The  degree of involvement would depend  on  the  method  employed 
to finance  the  capital  investment.  The  two  more logical methods of financing  the 
complete  system  are: 

0 Airport  Financing 
Current  provisions at ORD, including  the JP fuel  system,  have  been  funded 
through  revenue  bonds  issued by the  airport  authority.  This  was  done  following 
completion of agreements  with  the  operating  airlines.  Those  agreements cover 
commitment by the  airlines  to  ultimately  absorb  the  financial  costs  through  user 
fees-over a  period of time  consistent  with  the payoff schedule  for  the  bond  issue. 
This  maintains  airport  ownership of all  property  and  provides  an  assured  source of 
revenue  to  retire  the bond obligation.  This  procedure is followed by many  airports. 
Usually  it  can  yield  lower  interest  rates for the  required  capital,  and  better  tax 
considerations  are  available  when  compared to direct  private  funding by the 
airlines  or  other  industry  organization. 

0 Private  Financing 
This  method would involve  the  airlines  and  one  or  more  members of the  chemical 
industry as far as planning,  financial  arrangements  and  implementation is 
concerned.  The  airport  would  function  primarily in a n  overseer  role  with  review 
and  approval  authority  over  changes  to  the  airport  facilities.  The  separate 
financing  arrangements would minimize  the  bonded  indebtedness of the  airport-a 
factor  that is of increasing  concern.  Construction  and  operation of the  facility 
probably  would  be  the  responsibility of a member of the  chemical  industry-an 
arrangement  that  is  somewhat  standard  in  that  industry. 

In  addition  to  these  two  financing  methods,  there  are  undoubtedly  several  other  feasible 
approaches.  One  plausible-  approach would be a combination of private  and  airport 
financing, e.g., private  financing  for  the  liquefaction  and  storage  facilities  and  airport 
financing  for  the  distribution  system  and  airport  facilities.  Regardless of the  method 
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selected,  considerable  planning  and  commitment  agreements  between  the  airport, 
airlines  and  chemical  industry  organizations  would  be  necessary. 

The  total  annual cost  to the  airlines for the LH2 fueling  system at ORD  was  estimated 
assuming  financing of the  complete  system by the  airport  and by private  sources.  Costs 
computed  by  these  two  approaches  are  considered  to  represent  the  range of annual 
charge for the  system  to  be  levied on the  airlines.  Costs  based  on  airport  financing 
represent  the low end of the  range  due  to lower  cost of capital  and  absence of federal 
income taxes. Costs resulting from a privately  financed  enterprise  represent  the  high 
end  due  to  higher  cost of ,capital  and  federal income tax  obligations.  In  both  cases, 
however, state  and local taxes  were  omitted t o  afford  comparability  between  the  facility 
at ORD and  facilities  located  elsewhere. 

Table 13 summarizes  the  costs  associated  with  the LH2 fueling  system for  each 
financing  approach  discussed.  The  capital  investment  is  independent of the financing 
approach  selected  as  is  the  annual  operating  cost.  However,  the  cost of capital  recovery 
markedly  differs  between  the two approaches,  Capital  recovery  is  defined as the  annual 
charge  levied on the  airlines  to  cover  amortization of the  capital  investment,  return on 
investment,  and  federal  income  tax  liability, if applicable.  In  the  case of airport 
financing, i t  was  assumed  that  the  required  capital would be generated  through  the 
issuance of 8% revenue  bonds  with  a  20-year  maturity.  With no federal  income  tax 
liability  resulting from the  issuance  and  repayment of the  revenue  bonds,  the  capital 
recovery for the  airport  financing  method is simply  the  amortization of principal at 8% 
over the  assumed  20-year  lift of the  system.  In  the  case of I;. :.ate financing, a figure of 
20% of the  initial  capital  investment  was chosen  for the  annual  capital  recovery.  This 
figure  is considered representative of today's investment  requirements of chemical 
industries  and  existing  federal  tax  laws. As an example,  the following list of financial 
criteria would reduce t o  an  annual  capital  l'xovery  requirement of 20% of initial 
investment: 

Return on Investment  (Discounted  Cash  Flow) 14% 
Capital  Structure 10W0 Equity 
Economic  Lift  20 Years 
Federal  Income  Tax  Rate 48% 
Depreciation  Schedule  (double  declining 9 Years 

balance for first  year;  sum-of-years'- 
digits  thereafter) 

While  the  above  list of criteria  is considered  to  fairly  represent  the  kind of enterprise 
being  investigated  here, it  is  but  one of any  number of possible sets  which  can  reduce  to 
a  capital  recovery  requirement of 20% of investment. 

The  operating  costs  for  both  financing  approaches  are  identical  and  made  .up of 
operating  labor,  utilities  (excluding  cost of electrical  power),  maintenance,  taxes  and 
insurance,  and  overhead.  Maintenance  was  estimated a t  2% of investment  and  taxes 
and  insurance  were  estimated at a combined  figure of 1% of investment.  Overhead  was 
estimated a t  10% of the  sum of labor,  utilities,  maintenance,  taxes  and  insurance,  and 
system  depreciation  expense  (20-year,  straight  line). 
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Airport financing  (revenue  bonds) 

Total capital  investment-$M 
Annual  capital  recovery-$M 
Annual  operating  cost-$M 
Total airline  annual  cost'-$M 

Private  financing 

Table  13.-Economic  Summary 

(Costs in 1975 $I 

Concepts  Trades 

LH2 External 
Baseline Alternate  Delivery  Tank  config. 

468.55 443.87 270.22 584.82 
46.86 44.39 27.02 58.48 
21 .oo 20.06 1  1.42 26.1  5 
67.86 64.45 38.44 84.63 

Total capital  investment-$M 
Annual  capital  recovery-$M 
Annual  operating  cost-$M 
Total airline  annual cost'-$M 

468.55 443.87 270.22 584.82 
93.71 88.77 54.04 1  16.96 
21 .oo 20.06 1  1.42 26.1  5 

114.71 108.83 65.46 143.1  1 

*Excludes cost of power and GH2 or LH2 delivered to plant 



I I I. I. I ,  

The  total  airline  annual  cost,  listed as the  sum of capital  recovery  and  operating  costs, 
is exclusive of the cost of electrical power required  for  liquefaction  and  the  cost of LH2 
or GH2 delivered  to  the  plant.  Figures 64 and 65 illustrate  the  impact of  the  cost of 
power and feedstock  on the  cost of LH2 fuel  for  systems  financed  privately  and  publicly, 
respectively.  The  plots  on  the  left of each  figure  reflect  the  impact of costs  amortized 
over  total  airplane block fuel, 544 x lo3 kglday (600 tons/day).  The  plots  on  the  right of 
figures 64 and 65 show  costs  amortized  over  the  total  fuel  delivered  to  the  airlines, 
626 x lo3 kg/day (689 tondday).  The  difference of 80.7 x IO3 kg/day (89 tonslday) is the 
vent gas returned  to  the  liquefaction  plant,  which  could  be  credited  to  the  airline 
accounts.  The  true  ultimatp  cost  to  the  airlines  is  somewhere  between  that  shown  for 
block fuel  and  that  shown  for  delivered  fuel, for the two  financing  methods of figures 64 
and 65. The  figures  illustrate  the  severe  impact of the cost of electrical  power at 
moderate to high  rates.  The  total cost of power  was  computed  to  include a 10% 
allocation for overhead  which  is  additional  to  the  cost  per  kilowatthour. 

Figure 66 summarizes  the economic appraisal of the  baseline  and  alternate  concepts 
excluding  the  cost of gaseous  hydrogen  delivered  to  the  plant. A comparison of the  costs 
based on private  and  public  financing  methods  illustrates  the  substantial  advantage 
which airport  financing  would  accrue  to  the  airlines if such  an  undertaking  were 
financially  and  technically  feasible. 
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9.0 DESIRED  CHANGES TO AIRPLANE  CHARACTERISTICS 

Throughout  the  development of requirements  and  air  terminal  concepts,  certain  changes 
to  the  baseline  airplane  characteristics  were  noted  which  would improve the efficiency 
of ground  operations,  particularly  during  aircraft  fueling  and  servicing.  Results of this 
action  were  consolidated  and  reviewed  in  total,  .and  are  summarized below. 

9.1 AIRPLANE  FUELING 

It is  recommended  that  the  fueling  and  venting  ports be  moved  from the  tail of the 
airplane,  as  located  in  the  reference 1 study,  to a position  on the  right  forward  fuselage 
approximately 6 m (20 ft) fcom the  ground  (see  fig. 45). The  reason for the  change  is  to 
accommodate the boom fueling  and  venting concept  which  reduces  ground  vehicle 
congestion in  the  ramp  area  and  precludes  the  chance of damage  to  the  fueling  system, 
by ground  vehicles or other  aircraft.  The  recommended  location  also  reduces  the  time 
and  number of personnel  required  to  refuel  the  airplane by using  an  adjustable  swing 
boom mounted on the  passenger  terminal,  containing probe and  drogue-type  fuel  and 
vent  connectors.  This  arrangement would also  maximize  the  time  the GH2 scavanging 
system  is connected  to the  airplane. 

9.2 MAIN  LANDING  GEAR 

It  is  recommended  that  the  main  landing  gear  be  shortened by up  to 0.6 m (2 ft). This 
would  lower the  height of the  container deck  to  approximately 3 m (10 ft) above  ground, 
where  it  can be serviced  with  existing  equipment.  The  reduction  in  ground  clearance  to 
current widebody levels  should  have no adverse  effect on airplane  performance,  because 
rotation  angles  and  engine  clearance would  be adequate  with  the  shortened  gear.  The 
change  should  also  result  in  a  substantial  savings  in  landing  gear  weight  and  improved 
cornering  ability. 

9.3 CREW ACCESS 

A flight crew  access  hatch  and  ladder  in  the  nose  gear  wheel  well would facilitate crew 
access at airports  not  equipped  with  the  special  loading  bridges  with  provisions for  crew 
access. It would also  permit  direct  access  to  the  cockpit by maintenance  personnel. 
Many  smaller  airports  without LH2 facilities  might  have  one  or  two  gates  capable of 
receiving widebody aircraft,  but  with  only  a  single level airbridge  capable of reaching 
the lower  deck of the LH2 airplane.  The  relatively  small  number of boarding  passengers 
could use  the two stairways  inside  the  airplane  to  reach  the  upper  level..Such  airports 
would not be inclined  to  add  a  special  airbridge  just  to  accommodate  the  flight  crew. 

9.4 SERVICING  ACCESS 

To ease  the  heavy  congestion of service  vehicles  required for quick  turn  around  times 
desired for the LH2 airplane,  it  is  recommended  that: (1) the  front  and  rear  cargo 
container  access  hatches  be  relocated  closer  to  the  wing  to  allow room for additional 
galley  service  vehicles,  and (2) the  aft  cabin door stagger  between  the  upper  and lower 
decks  be  decreased  to  facilitate  upper  and  lower deck galley  servicing  from a single 
galley  lift  loader,  and (3) the  airplane be  equipped  with a single-point  toilet  servicing 
manifold to  reduce  the  number of vehicles  around  the  airplane.  All  suggested  external 
changes  are noted in  figure 67. 
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The recommended changes to  the cabin  interior  arrangements  are  shown  in  figure 68. 
These changes move the  center galleys  to  either end of the  passenger  cabin so they  can 
be readily serviced. The wing  prevents direct galley  servicing through the  center cabin 
doors. Additional changes noted are recommended to streamline  galley  service. 

LH2 and G H 2  connectors 

Figure 67. -Recommended External Changes 
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Add  galley to service 
the first class  section 

h- 
Delete  center  galleys 
or  change to toilets.  Cannot 
service  galleys by truck 

T - Toilet 
S - Storage 
G . Galley 
B - Bar 

Up - Stairway 
Galley truck 

Increase  galley 
to accommodate 
all of tourist 

Upper deck - 190 passengers ’Add elevator 
for galley  service 

Lower  deck - 210 coach  passengers 

Figure 68.”Recommended Changes to Cabin  Arrangement 





10.0 RESEARCH AND TECHNOLOGY RECOMMENDATIONS 

Generally,  the LH2 system  defined  during  the  study is based  on  the  adaption of 
facilities,  equipment,  procedures  and  construction  methods  that  have  been  proven  on 
the  space  program  or  during  application of LH2 and other  cryogens  in  the  industrial 
area.  Ultimate  application of  LH2 to  the  operational  situation at airports  and  the  air 
transportation  systems  in  general  could  benefit  from  research  and  technology  efforts  in 
the  three  following  categories of interest: 

e Airplane  servicing 

e LH2 system efficiency and  control 

e Additional  airport  impact 

A  discussion of the specific  needs  and  recommendations  are  provided  under  the  headings 
below. 

10.1 AIRPLANE  SERVICING 

The  methods  and  procedures  to  be  applied  during  the  fueling  and  venting  operations  in 
the  apron  area  deserve  considerably  more  evaluation  than  was  possible  during  this 
study.  Several  feasible  concepts  were  identified.  These  ranged  from  semiautomatic 
devices  (lines  and  disconnect  valves)  that  connected  to  the  ai,rplane  from  a  retracted 
position  in  the  apron,  to  a boom system  mounted  on  the  terminal  structure. 

The boom concept offered the  advantages of eliminating  the  need  to  tunnel  beneath  the 
apron for LH2 system  lines  and  also  cleared  the  general  airplane  servicing  area  on  the 
apron of all  fueling  equipment. No objections  to the boom concept  were  made  by  the 
airport  authority  or  the  airline  subcontractor.  However,  the  concept  calls  for  mounting 
the LH2 and  vent  lines on the  terminal  and  the  actual  connection  to  the  aircraft would 
be a remote  operation.  The  safety  aspects of the concept,  considering  potential  line  leaks 
or  major  spills  and  the  overall  practicability of the  concept,  should be evaluated 
considering  more  definitive  reqirements. 

It  is  recommended  that  a  more  detailed  evaluation  study  be  conducted  on  two or more 
concepts  using  safety  and  cost as the  major  figures of merit.  The  most  attractive  concept 
should  be  designed  in  sufficient  detail  to  determine specific components  such as nonspill 
disconnects that  deserve  research  and  technology  effort. 

10.2 LH2 SYSTEM  EFFICIENCY AND CONTROL 

In  the  technical  appraisal,  section 8.1, i t  was  noted  that  there  are  several areas tha t  
would benefit  from an  advancement  in  technology  and/or  further  evaluation.  These 
involve: 

1. Improving  the efficiency of the  hydrogen  liquefaction  plant 

2. The  development of new  techniques  for  distribution  system  installation,  checkout, 
and  monitoring 
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3. The  development of advanced  design  movable  joints  and  connects 

Improvements  to  hydrogen  liquefaction  plant  efficiencies  will  require  the  development 
of process  cycles  specifically  tailored  to  the  plant  capacities  associated  with  the 
conversion of major  airports  to  hydrogen. It is recommended  that a detailed  evaluat.ion 
of large  plant  cycles  be  initiated  with a company  involved in  gas  liquefaction  processes. 
Improved  plant  efficiencies  could  lead  to  significant  reductions  in  the  power  required 
(and  cost) of liquefying  hydrogen. 

The  development of new  techniques for distribution  system  installation,  checkout  and 
monitoring could lead to a significant  saving  in  both  capital  investment  and  operating 
cost. Prompt  detection of a system  malfunction could prevent  what  might become a n  
extended  disruption of airport  operations.  It  is  recommended  that  the  concepts 
developed in  this  study.  be  utilized  in a detailed  analysis  considering  these  items  in 
terms of component  design  and  application. 

The  development of advanced  design  movable  joints  and  connects is required  to  lower 
maintenance  costs  and  ensure  gate  area  safety.  This  is  the  one  area  in  which  current 
component  technology  is  marginal  toward  satisfying  airport  ground  system  component. 
life  and  reliability  requirements.  An  early  development of movable  joints  and  connects 
is  recommended  with  emphasis  on  providing a design  through model testing,  rather 
than  through  conjecture  based on analysis. 

10.3 OTHER  AIRPORT  IMPACT 

A  limited  evaluation of the  gross  impact of LH2 on several  airports  other  than ORD was 
made  during  this  study.  When  compared  to  ORD,  some of the  additional  airports  were 
found to exhibit  considerably  different  characteristics  that  would  affect  the  nature of 
LH2 fuel  system  installation  and  operations.  The  available  area,  type of terminal  and 
apron  characteristics,  and  passenger/transport  traffic  characteristics,  including  quantity 
and  peak  hour  movements,  were  some of the  differences  that would affect the  nature of 
an LH2 system at  airports  other  than ORD. The  gross  evaluation  made  to  date  indicates 
that  airports  such as Miami, Los Angeles,  Seattle  and  Honolulu would  offer a more 
significant  challenge  than ORD. In  addition,  it would be  desirable  to-extend  the  present 
study to include a more  thorough  evaluation of the  domestic  and  international  air 
transportation  system as i t  would be  affected by LHz. 

It  is recommended tha t  a study be initiated  to  cover  the  probable  route  network  that 
would be impacted by LH2. Airports  that  appear  to  exhibit  more  severe  characteristics 
should  receive  exploratory  evaluation  similar  to  that  applied  to ORD. The  study  should 
also  consider  the  hydrogen  supply  system  to  serve  the  airport  network  during  the 
implementation  period  and  after  the  complete  network  becomes  functional. 

Boeing  Commercial  Airplane  Company 
P.O. Box 3707 

Seattle,  Washington 98 124 
May 1976 
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APPENDIX A 
AIRPORT FUELING AND TRAFFIC DATA 

This  appendix  contains  data  which  support  study  results  pertaining  to widebody traffic 
and  fueling,  and  international  traffic at ORD. It also  contains  airport  layouts  used  in 
developing  the  estimates of LH2 fuel  system  requirements  for  six of the  airports 
included  in  the  expanding  network  discussed  in  section 7.5. 

Table 14, extracted  from  reference  4,  is a listing of daily widebody flights  through ORD. 
I t  identifies the  carrier,  origin  and  destination  airports,  arrival  and  departure  times  and 
flight  numbers.  Table 15 shows  the  hourly LH2 hydrant  demand at ORD  by  each 
domestic  airline  and  the  foreign  airlines.  The  data  in  this  table  were  derived  from 
figure  8,  in  the body of the  report. 

Table  16  is a consolidation of widebody fueling  data  obtained  from  the  six  principal 
operators at ORD. The  actual  fuel  loadings  shown  represent  approximately 83% of the 
ORD  widebody flights.  In  table 17, these  data  were  extrapolated  to  include  all  the 
flights,  from  which the  daily JP fuel  totals  were  obtained.  The  information  from  this 
table  is  shown  in  summary  form  in  figure  12. 

Total widebody and  narrowbody  international  flights  are  shown  in  table 18. These  data 
were  used  to  determine  the  number of gates  required  in  the  alternate concept  developed 
in  section  6.  Table  19 is included for reference  in  identifying  airports by  code  symbol. 

Figures  69  through 74 are  layouts of six  major  domestic  airports,  showing  runways  and 
major  facilities. LHp liquefaction  plant  and  storage  area  requirements  were  estimated 
from the  number of widebody operations  and  network  average  route  lengths  shown  in 
table 20. Plant  areas  are  represented by a circle  drawn  to  scale,  located  in  what 
appeared  to  be  available  areas  not too distant from the  passenger  terminal,  cargo 
area/maintenance  area.  The  three  principal  elements of the  distribution  system  are 
identified.  They  are: 

(1) Main  System: LH2 and  redundant GH2 lines  to  the  passenger  gate 
area 

(2)  Vent & N2 Lines: To the  maintenance  areas 

(3) Branch  Lines: LH2 and GH2 lines  connecting  the  main  system  to 
passenger   gate   hydrants   and  to   the  cargo  area 
hydrants 

Figure  75  shows  average  delays  experienced at ORD,  by month,  for  the  years  1972  and 
1973.  These  data  were  taken  into  account  in  establishing  airplane  block  fuel 
requirements. 
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UA 
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LH 
UA 
BA 
SK 
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UA 
TW 
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AA 
co 
NW 
UA 
UA 
AA 
UA 
co 
AA 
AA 
UA 
NW 
UA 
NW 
UA 
UA 

Table lrl.-Widebody Operations at ORD 
(From: Reference 41 

O B  D LT - 
MSP 01  37 
JF K 0305 
HNL 0545 
I TO 0605 
HN  L oaoo 
HNL 0730 
CLE 091 5 
JFK 1105 
PIT 1147 
.EW R 1208 
DTW 1450 
AMS 1540 
LHR 1500 
MSP 1554 
YUL 1545 
F RA 1620 
LAX 1610 
LHR 1630 
YUL 1700 
ANC 1 a24 
LAS 1 a50 
SF0 lalo 
SF0 0002 
LAX 0540 
LA X 0529 
SEA 0549 
SEA 0555 
HN  L 0620 
PHX 0604 
SF0 0620 
DEN 0747 
BUF 081 3 
YYZ 0824 
BOS 0906 
EWR 091 2 
JF K 091 5 
MSP 0913 
PH L 0903 
PIT 0910 

Legend: 
CA - Carrier 
OAP - Origin  Airport 
DLT - Destination Local Time 

Flt - Flight No. Inbound 
In 

(O'Hare Arrival) 

F l t  
in 

244 
245 
990 

- 

118 
16 

992 
953 
3 

107 
993 
129 
61 1 
77 1 
442 
31 
430 
104 
569 
94 1 
6 

218 
770 
282 
196 
906 
26 
158 
I a6 
246 
136 
606 
1 a1 
265 
123 
95 
225 
750 
143 
103 

F It 
out 

244 
245 
990 

- 

118 
17 

723 
953 
3 

107 
993 
129 
612 
77 1 
443 
30 
431 
115 
570 
942 
6 

218 
770 
21 7 
196 
921 
26 

I 58 
101 
57 
136 
607 
181 
265 
123 
95 
225 
750 
143 
103 

Flt - Flight  No.  Outbound 
out 
OLT - Origin Local Time 

(O'Hare Departure) 
DAP - Destination Airport 

- ~~ 
~~~ 

0 LT 

0230 
0405 
071 5 
0730 
1315 
1025 
1030 
1205 
1300 
1320 
1545 
1730 
1745 
1655 
1730 

- 

1815 
1 a25 

I a40 
2030 

1925 
1950 
1930 
0820 
0700 
081 0 
0700 
0700 
0835 
0955 
0744 
0900 
0900 
0908 
1010 
1000 
1010 
1010 
1005 
1010 

JFK 
MSP 
CLE 
PIT 
HN L 
LAS 
HNL 
ANC 
LA X 
HN  L 
SF0 
AMS 
SF0 
MSP 
YUL 
FRA 
LA X 
LHR 
YUL 
JFK 
BOS 
LH R 
DEN 
EW R 
DEN 
AT L 
BOS 
LAX 
MEX 
YYZ 
LAX 
LAX 
SF0 
SF0 
SEA 
SAN 
TPA 
SEA 
LAX 
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Table 14.-Widebody Operations at ORD (Continued) 
(From: Reference 4) 

CA - 
DC-10 NW 
(cont.) NW 

NW 
NW 
UA 
NW 
AA 
UA 
UA 
AA 
UA 
co 
UA 
UA 
NW 
UA 
NW 
UA 
co 
AA 
NW 
AA 
AA 
AA 
NW 
NW 
co 
UA 
AA 
UA 
UA 
SR 
co 
NW 
NW 
AA 
NW 
AA 
AA 
UA 
UA 
NW 
UA 
UA 
UA 

YWG 
JF K 
EWR 
MSP 
ED  L 
EWR 
EWR 
EWR 
PH L 
SY R 
YYZ 
DEN 
DEN 
HN  L 
PD X 
PD X 
TPA 
CLE 
L A X  
MEX 
SEA 
SF0 
L A X  
SF0 
AT  L 
SEA 
DEN 
L A X  
PH X 
YVR 
SF0 
80s 
LA X 
MSP 
SEA 
LAX 
MIA 
SF0 
SY R 
DEN 
LAX 
MSP 
SAN 
SEA 
S F 0  

D LT - 
1017 
1120 
1105 
1138 
1201 
1254 
1204 
1208 
1201 
1215 
1213 
1305 
1338 
1340 
1307 
1335 
1325 
1448 
1445 
1454 
141  5 
1419 
1537 
1552 
1654 
1610 
1655 
1610 
1644 
1605 
1610 
1715 
1740 
1713 
1710 
1839 
1808 
1853 
1919 
1905 
1905 
1904 
1900 
1905 
1905 

Flt 
In - 

704 
29 
47 

426 
121 
71 

213 
147 
463 
197 
345 
926 
236 
100 
46 

142 
729 
203 
608 
104 
94 

220 
184 
182 
'27 
72 

914 
358 

66 
144 
126 
164 
908 
444 

28 
188 
723 
214 

47 
492 
108 
458 
786 
1  50 
128 

Flt  
out - 
704 
29 
47 

125 
121 
71 

21 3 
147 
463 
197 
345 
605 
236 
155 
46 

142 
729 
203 
941 

66 
94 

220 
184 
182 
27 
72 

903 
358 

66 
144 
145 
165 
905 
445 

28 
188 
723 
21 4 
47 

492 
108 
728 
786 
150 
128 

1105 
1215 
1155 
1240 
1300 
1345 
1300 
1305 
1300 
1300 
1315 
1540 
1430 
1550 
1400 
1430 
1425 
1545 
1830 
1725 
1500 
1515 
1630 
1645 
1740 
1700 
1800 
1710 
1725 
1659 
1830 
1845 
2200 
1810 
1755 
1940 
1900 
1945 
201 0 
2000 
2005 
21 00 
2000 
2000 
2005 

DAP - 
AT L 
SEA 
PDX 
MSP 
SF0 
SEA 
SF0 
SEA 
DEN 
LAX 
LAS 
DEN 
CLE 
SEA 
DTW 
EW R 
MSP 
DEN 
DEN 
DTW 
DTW 
BOS 
LGA 
EWR 
SEA 
EW R 
LAX 
E\N R 
DTW 
PH L 
PDX 
BOS 
LAX 
MSP 
CLE 
JF K 
MSP 
YYZ 
SF0 
EWR 
PIT 
TPA 
CLE 
BOS 
ED L 
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DC-10 
(cont.) 

L-1011 

CA 

NW 
AA 
UA 
AA 
UA 
co 
UA 
co 
UA 
co 
NW 
D L  
EA 
TW 
D L  
TW 
Tw 
Tw 
D L  
Tw 
TW 
D L  
D L  
TW 
TW 
D L  
EA 
D L  

Table 14.-Widebody Operations at ORD (Concluded) 

(From: Reference 4) 

PAP 
TPA 
BOS 
BOS 
DTW 
EWR 
LAX 
SEA 
DEN 
DEN 
LAX 
SEA 
JAX 
AT L 
LAX 
AT L 
BOS 
PH L 
50s  
AT L 
PIT 
LAS 
MIA 
M CO 
LAX 
LAS 
AT L 
SJU 
AT L 

D LT 

1914 
201 4 
2020 
2030 
2020 
2040 
1330 
2105 
2127 
2335 
2327 
01  08 
01  18 
0540 
071  5 
091 0 
0907 
1052 
1102 
1114 
1501 
1512 
1655 
1745 
181 5 
1832 
1920 
221 2 

- 
Flt 
in 

75 1 
157 
117 
107 
237 
902 
140 
910 
916 
904 

12 
1196 
954 
20 

1192 
117 
71 1 
195 

1038 
25 

102 
1  1 3.6 
1138 

36 
780 

1148 
948 

1132 

- 
Flt 
out 0 LT 

75 1  2000 
157 2100 
117 21  25 
107 0900 
237 21  20 
91  1  01 00 
111  1550 
907  1200 
210  1140 
91  7  1500 
41 5  0800 

1 1 39 0725 
949  1015 

20  0700 
1135  0900 

117 1000 
71 1 0955 
195  1145 

1039  1215 
25  1200 

102  1550 
1151  1640 
1133  181  5 

36  1845 
135 0900 

1091 21 00 
957 21 00 

1193 01 20 

- DAP 

MSP 
SF0  
LAX 
PHX 
DEN 
DEN 
LAX 
LAX 
DTW 
LAX 
MSP 
TPA 
SJU 
PH L 
MIA 
LAX 
LAS 
LAS 
MIA 
LAX 
BOS 
TPA 
TPA 
PIT 
SF0 
AT L 
AT L 
AT L 

- 
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Table  15.-Hourly  Widebody Hydrant Demand*-ORD 

Time of Day, Hr 

Total 
24 1 2  3 4 5 6 7 8 9 10 1 1  Noon 13  14 15 16 17 18 19 20 21 22  23  24 Departures' 

'Widebody  cargo f l t s  not included (approx. 2/day) 



Table 16,"Airline Fueling Data-0 RD 

Air- 
line A/C 

NW 747 
DC10 

" 

D L  L-1011 
AA DC10 
CO DClO 

DClO 
DClO 
DC10 
DClO 
DC10 
DC10 
DClO 
DClO 

Tw 747 
747 

L-1011 
L-1011 
L-1011 
L-1011 
L-1011 
L-1011 

UA 747 
747 
747 
747 
7 47 
747 
747 
747 
7 47 

Fl t  no. 

- 
- 
- 

91 1 
92 1 
607 
907 
91 7 
605 
903 
941 
905 
770 
71 1 
71 1 
195 
25 

102 
36 

780 
107 
115 
118 
129 
21  8 
723 
953 
990 
993 

- 

F I ts/w k 

32 
118 . 
49 

104 
5 
6 
7 
7 
7 
7 
5 
7 
7 
7 
6 
7 
7 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
3 
3 

Average 
Total  fuel  fuel/flt 
(gal/wk) (gal) 

354  788 11 087 
594  229 5 036 
152 003 3  102 
658  165 6 329 

21 998 4 400 
24673 4 112 
51  612 7 373 
50891 7 270 
48  105 6 872 
28652  4093 
39 526 7 905 
33 708 4 815 
64879  9268 

186  162  26  595 
71 240 11 873 
48500  6929 
52 034 7 433 
48 346 8058 
31 239 4 463 
21 573 3 082 
18489  2641 

10  385 
- 10  118 
- 6 593 
- 6 356 
- 4 119 
- .9 111 
- 30 222 
- 3 140 
- 28  889 

~- 
\ir- 
ine A/C Flt no. Flts/wk - - " 
JA  DClO 101 

DC10 103 
DClO  108 
DC10  111 
DC10 123 
DClO 128 
DClO 142 
DClO 144 
DClO 145 
DC10 147 
DClO 155 
DC10  157 
DClO 158 
DC10  203 
DClO 210 
DC10  225 
DC10 236 
DClO 237 
DClO  345 
DClO 358 
DC10 463 
DC10  492 
DC10 640 
DC10 786 
DClO 217 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

Average 
Total  fuel fuellflt 
(gal/wk) (gal) 
" 

7 733 
7  467 
2 281 
7 348 
8 504 
7 052 
2 844 
3 556 
7  881 
7 289 
7 852 
5 985 
5 244 
3 793 
4 370 
8 474 
1 807 
4 622 
6 281 
3 348 
8  207 
2 993 
5719 
1 748 
8 652 

"United  Airlines data  received for a "typical day". 

Gallons x 3.785 = Liters 



Table 17.-Widebody Fueling  Characteristics-OR0 

I * \  ORD fuel load-gal Total ORD fuel 
Max Avg Total . Capacity Total capacity A I C  Fltslday"' ~ Min ~ 

747-100 
-1 00 
-1 00 
-200 
-200 
-200 
-100 
-1 00 
-1 00 

DC10-10 
-10 
-10 
-40 
-40 

L-1 01  1 
L-101.1 
L-1011 

Notes: 
Gallons x 3.785 = liters 

9  3  140 
2 11 a73 
4  4  162 
2 20 243 
1 
1 
1 .  
1 
1 

22 

25 1 748 
15 6  023 
9  4  093 

- 

17 
1 

67 
- 

6  3  080 
7 
2  5  500 - 

15 

104 

30  222 
26 595 
9  195 

30  222 

8 652 
6 651 
9 268 

7  433 

12 700 

12 104 loa 933 
19  234  38  468 
6772 27 oaa 

25 233  50  465 
4  300 

26 700 
4  300 

29 000 
26 700 

14 362 31 5  954 
~~ 

5  642 141 050 
6 329 94  928 
6  234 56  108 
5036 85 612 

3 875 
" 

5 695 381 573 

5434 32 606 
3  102 21 715 
9 loo 18200 
" 

4.835 72 521 

7 404 770 048 

423  900 
94 200 

1 aa 400 
102 aoo 
51  400 
51  400 
47 100 
47 100 
47 100 

1  053  400 

652  500 
391 500 
234  900 
61 2 000 
36 000 

1  926  900 

157 200 
183  400 
52 400 

393 000 

3 373 300 

(1) Flights scheduled less than daily were assumed to fly  daily  to arrive at "busiest day" demand 
(2) Fuel loadings estimated from  total  fuel data  provided by  airline. 
(3) Estimated. 

Aircraft  fuel capacities 
747-100 47 100 gal 
747-200 51 400 
DC10-10  26  100 
DC10-40  36 000 
L-1011 26 200 

30% 

20% 

18% 

23% 
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Table 78.-Daily International Schedule0 RD 
(From: Reference 4) 

Air-  Flight A/C 
line no. model 
Widebody flights 

AA 265  Dl0 
UA 345 Dl0 
AA 104 Dl0 
TW 771 747 
K L  611 747 
AF 031 747 
LH 430 747 
BA 569 747 
SK 941 747 
SR 164 D l 0  

" 

Narrow-body flight, 

UA 483 
UA 483 
AC 721 
UA 221 
AC 731 
AA 623 
AC 733 
UA 633 
AA 343 
MX aoo 
AC 725 
SK 945 
NW 736 
OA 421 
AC 735 
PA 59 
TW 849 
AA 205 
IN 121 
AC 727 
JM 053 
AC 729 
LL a01 

UA 685 
AA 170 

AA 611 
JM 051 
JM 051 
MX E02 
AC 737 

727 
737 
D9S 
727 
72s 
72s  
D C8 
737 
707 
725 
72s 
D8S 
72s 
707 
D9S 
707 
E3F 
7 07 
707 
D9S 
72s 
72s 
Das 
707 
727 
727 
D9S 
725 
727 
D9S 

Origin - 
YYZ 
YYZ 
MEX 
LH R 
AMS 
YUL 
FRA 
LH R 
YUL 
GVA 

YNG 
YNG 
YYZ 
YYZ 
YUL 
YYZ 
YUL 
YNG 
YYZ 
MEX 
YYZ 
CPH 
YWG 
YUL 
YUL 
FRA 
CVG 
YYZ 
YUL 
YYZ 
MBJ 
YYZ 
KEF 
ACA 
YYZ 
YYZ 
NASJ 
NAS 
ACA 
YU  L 

). 
t 

1: 
Time of day 

3 
f 

-t 
f 
L 

t 
L 

2400 

I42 



ACA 
AMS 
ANC 
A T L  
BD L 
BOS 
BUF 
CLE 
CPH 
CVG 
DEN 
DTW 
EW R 
FRA 
G VA 
HN L 
I TO 
JAX 
JFK 
KEF 
LAS 
LAX 
LGA 

Table 79.-City/Airport Codes 
(From: Reference 4) 

Acapulco, Mex. 
Amsterdam, Holland 
Anchorage,  Alaska 
Atlanta, Ga. 
Hartford, Conn. 
Boston, Mass. 
Buffalo, N.Y. 
Cleveland, Ohio 
Copenhagen, Denmark 
Cincinnati, Ohio 
Denver, Colo. 
Detroit,  Mich. 
Newark, N.J. 
Frankfurt, Germany 
Geneva, Switzerland 
Honolulu, H.I. 
Hilo, H.I. 
Jacksonville, Fla. 
Kennedy-New York 
Keflavik, Iceland 
Las Vegas, Nev. 
Los Angeles, Calif. 
LaGuardia-New York 

LHR 
MBJ 
MCO 
MEX 
MIA 
MSP 
NAS 
PDX 
PH L 
PHX 
PIT 
SA N 
SEA 
SF0 
SJU 
SY R 
TAP 
YNG 
YUL 
YVR 
YWG 
YYZ 

Heathrow-London 
Montego Bay,  Jamaica 
Orlando, Fla. 
Mexico  City, Mex. 
Miami, Fla. 
Minneapolis-St. Paul, Minn. 
Nassau,  Bahamas 
Portland, Ore. 
Philadelphia, Pa. 
Phoenix, Ariz. 
Pittsburgh, Pa. 
San Diego, Calif. 
SeattleTTacoma,  Wa. 
San Francisco, Calif. 
San Juan, Puerto Rico 
Syracuse, N.Y. 
Tampa, Fla. 
Youngstown, Ohio 
Montreal, Que. 
Vancouver,  B.C. 
Winnipeg, Manitoba 
Toronto,  Ontario 
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Figure  69.-Atlanta  Airport 
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Figure 70.-Honolulu Airport 
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Figure  73.-SeattleKacoma Airport 



Figure 74.-Miami Airport 



Table  20.--Relative LH2 System  Requirements-7 Airports 

ORD - 
Daily departures: total 112 

2 2000 nm i 8 
1500 to 2000  nmi 37 

< 1500  nmi 67 

Daily WTD  miles (1000) total 147 
(3000 x 1 .O) for ranges 2 2000 24 
(1 750 x 1.05) for ranges 1500 to 2000  68 
(750 x 1.10)  for ranges< 1500 55 

WTD block fuel  factor and 1 .oo 
WTD total fuel factor 

Peak hydrant demand  12 
Demand  factor  1 .oo 

LH2 storage factor 1 .oo 
LH2  distribution system  factors: 

Line size factor  1 .oo 
Line  length:  main line  9200/1 .OO 

branch  line  950011 .OO 
vent  and N2 17  00011 .oo 

Plant size, acres 25 
Land acquisition None 

JF K 

90 
58 
13 
19 

21  3 
174 
24 
15 

1.45 

- 

15 
1.25 

1.45 

1.12 

12  00011.30 
520010.55 
800011 .OO 

32 
None 

LA X 

112 
40 
31 
41 

21  1 
120 
57 
34 

1.44 

- 

20 
1.67 

1.44 

1.29 

13 00011.41 
350010.37 
200010.12 

32 
None 

AT L 

47 
2 
6 

39 

50 
6 

12 
32 

0.34 

8 
0.67 

0.34 

0.82 

630010.68 
600010.63 
850010.50 

12 
None 

HN L 

43 
43 
0 
0 

129 
129 

0 
0 

0.88 

- 

8 
0.67 

0.88 

0.82 

730010.79 
700010.74 
200010.12 

23 
Fill 

SEA 

35 
8 
7 

20 

54 
24 
13 
17 

0.37 

7 

4 
0.33 

0.37 

0.57 

660010.72 
91 0010.96 
300010.18 

12 
None 

MIA 

33 
6 
0 

27 

40 
18 
0 

22 

0.27 

- 

6 
0.50 

0.27 

0.7 1 

650010.71 
4900f0.52 
470010.28 

10 
None 
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Figure 75.-ln-flight and Taxi Delays-ORD 
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APPENDIX B 
REGULATIONS 

Airport-related  regulations,  explained  and  illustrated below, governed  or  influenced  the 
installation of LH2 facilities. 

AIRSPACE PROTECTION 

The  Federal  Aviation  Regulations,  Part  77  (reference 5 )  define  the  “imaginary  surfaces” 
which  protect  the  airways  from  encroachment of obstacles  to  air  navigation.  Figure  76, 
excerpted  from  reference 5,  illustrates  these  surfaces.  For  the  purposes of this  study,  no 
parked  aircraft  or  building  shall  extend  above  the following imaginary  surfaces: 

Primary  Surface 
A  surface  longitudinally  centered on a  runway.  This  surface is as  long  as  the 
associated  runway  plus 200 ft*on each  end;  1000 f t  wide (500 f t  each  way  from 
centerline);  elevation of any  point on the  surface is the  same  as  the  nearest  point 
on the  runway  centerline. 

Transitional  Surface 
A  surface which extends  outward  and  upward  at  right  angles to the  runway 
centerline,  and  the  runway  centerline  extended,  at  a  slope of 7  horizontal  to 1 
vertical from the  sides of the  primary  surface. 

Approach  Surface 
A  surface  longitudinally  centered  on  the  extended  runway  centerline  and 
extending  outward  and  upward from the  end of the  primary  surface at a slope of 1 
vertical  to 50 horizontal. 

The ORD airport  layout  plan  has  chosen  to  interpret  these  descriptions  to  locate  the 
“Building  Limit  Line”  (BLL)  parallel to and  750  ft from the  runway  centerline  andlor 
180 f t  from taxiways. No building  should be located on the  runway  side of such  lines.  In 
addition, no parked  airplane  should  penetrate  the  imaginary  surfaces.  In  effect  this 
requirement  places  the  parked  airplane  tail  fin  not  closer  to  the  runway  centerline 
than: 

Model 
Lockheed LH2 (Internal  Tank) 

Boeing 707-320 
Douglas  DC-8-63 
Beech  B80 “Queen  Air” 

Tail  height 

59.5 ft 
42  ft 
43  ft 
14.8  ft 

Distance to 
runway  centerline 

920  ft 

794  ft 
801  ft 

605 ft 

TERMINAL  TAXI-LANE 

Airplanes  approaching a location of high  traffic  congestion  such  as  adjacent  to  the 
passenger  loading  apron  will  be  taxiing at relatively low speed,  yet  still  require a 
cleared  path  wider  than  their  wingspans.  Data  from  reference 8, shown  in  table  21, 

* 1 f t  = 0.3048 m. 
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Isometric View of Section A-A 

77.25 Airport Imaginary Surfaces 

Figure 76.-Objects Affecting Navigable  Airspace 
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Table 21.- Taxiway Dimensional Criteria 
(From: Reference 8) 

CESIGN ITEM 

1. Taxiway S t ruc tu ra l   Pavemen t  
Width  on  Tangents 

2. Taxiway  Structural   Pavement  
Width  on  Turns 

3 .  Taxiway  Shoulder  Width 

4. S a f e t y  Area Width 

5.  Taxiway  and  Apron  Taxiway 
Gbstacle  Free  Area  Width 

6 .   Termina l   Taxi lane   Obs tac le  
Free Area  Width 

7 .  S e p a r a t i o n   D i s t a n c e  from 
Taxiway CL t o  Taxiway CL 

8. Sepa ra t io?   D i s t ance   f rom 
Taxiway CL t c  Runway CL 2/ 

9.  Radius  of  Taxiway CL Turns 

D I P E K S I O N A L  C R I T E R I A  (FEET) 
AIRPWNE TAXIWAY DESIGN GROUP I /  

- I 
50 

65 

20 

110 

210 

160 

20 0 

400 

100 

- I1 

75 

90 

25 

165 

285 

2 25 

300 

400 

150 

- 111 

100 

115 

35 

220 

3 65 

295 

300 

600 

150 

IV 

125 

- 

140 

40 

3 10 

470 

390 

400 

1000 

200 

Determine  Airplane/Taxiway  Design  Group  from  Figure 4 o r  5 .  
- 21 Wnere CAT 11 o p e r a t i o n s   a r e   a n t i c i p a t e d ,   u s e   a t   l e a s t  600 fee t .  



.. . - . . -.-  .” . 

specifies  minimum  widths  for  terminal  taxilanes,  related  to  the  size of the  largest 
airplane  for  which it is  designed.  The LH2 airplane  would  be  classed  in  Group 3, 
requiring a 295-ft wide taxilane.  This  width would provide  61-ft  clearance  on  each 
wingtip. 

TERMINAL  AIRPLANE  PARKING 

When  approaching  and  maneuvering  into its assigned  parking  space  on  the  passenger 
loading  apron,  airplane  speed is reduced  even  further  than  on  the  terminal  taxilane. 
With  reduced  speed,  airplanes  can be parked  very  close  to  each  other.  Industry 
agreement, as documented  in  reference 9 ,  defines  the  conditions  and  relationships of 
parked  airplanes to the  terminal  building.  Figure  77,  excerpted  from  reference 9 ,  spells 
out  those  conditions. 

PASSENGER ACCOMMODATION SPACE  IN  TERMINAL 

It  is recognized that  rational  passenger  terminal  design  must  allow  adequate  space for 
airport  functions,  plus  that  required for passenger  waiting,  circulation  and  convenience. 
However, it is difficult  to  obtain  agreement  among  architects  as  to  what  factor  can  be 
considered  adequate:  adequate  space  in  a  given  terminal  situation  may  be  lavish for 
another  and  yet  inadequate  for a third.  The  FAA  selected  a  factor of 242 ft2 per  typical 
peak  hour  passenger  for  estimating  terminal  space  requirements  for  long-range 
planning  (see  table  22).  That is probably  a good factor  since  architects  Landrum  and 
Brown found  the  present ORD terminal  “over  utilized”  in  1967  with a calculated  factor 
of 212 ft2/TPHP. 

Our  situation  here is different:  all of our  airport  functions  requirement  is  already 
fulfilled  in  the  existing  terminal.  Therefore,  all  that is required is boarding  lounge 
space.  Reference 10 suggests  an  allowance for terminal  boarding  lounges of 11 ft  per 
passenger  seat  in  the  airplanes  accommodated. 

2 
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I 
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300 400 

Distance  along terminal, f t  

From: Reference 9 

70' nose  wheel 
steering (power out) 

10-ft travel with 
nose  wheel 
straight ahead 
before and 
after parked 
position 

15-ft  building 
clearance for 
nose-in parking 

25-ft  building 
clearance for 
other parking 
positions 

25-f t aircraft- 
to-aircraft 
clearance during 
parking 
maneuvers 

Coordinate with 
using airline 
for specific 
planned operating 
procedure 

Figure  77.-Minimum Parking Space Requirements 



Table 22.- Terminal  Building Area  Requirements 
(From: Reference 7) 

Backup Sheet for Terminal Building, Air Carrier;  Passenger 

1. Derivation, Uni t  Area Per TPHP, Domestic 

Using the data  in "Airport Terminal Buildinga1I 8 8  besee for  determining unit square 
foot area6 per typical peak. hour passengers (TPHP!, and assuming the  values I n  the 
curve6 for 1,000 TPHP t o  bc the norms for  our present puypose, the followlng values 
are given: 

Ticket Lobby 
A i  r 1 ine Oper. 
Baggage  Claim 
Waiting Rooms 
Eating Fac. 
Kitchen & Stor. 
Other Concessions 
RssL Rclo~ns 

Total 

10 sq. f e e t  
48 sq. f e e t  
10 sq. f e e t  
18 sq. feet  
16 sq. f e e t  
16 sq. f e e t  
5 sq. f e e t  
3 sq. f e e t  " 

126 sq. f e e t  = 52* 
Circulation, Mech. 
ti Maint. , 'dnlls, 
P a r t i t i m s  116 sq. f e e t  = 48* 

Gross Are& 242 6q. feeC/TPHP = , 1 0 0 ~  

* Factors used by Philadelphia  Consultants, 1966 



APPENDIX C 
ALTERNATE RAMP  SERVICE  CONCEPTS 

C1-FUELING 

Many  methods  and  equipment  designs  were  considered  in  servicing  the LH2 airplane on 
the  ramp.  The  fueling  operations  were  given a great  deal of study for the  optimum 
arrangements  and concept  designs for safety  and  reduction  in  ramp  congestion.  The 
selected  fueling  design is described  in  sections 5.6 and 5.7 of this  report.  Some of the 
alternate concepts  reviewed are described  in  the following paragraphs. 

LH2 FUEL  TRANSFER  TRUCK  CONCEPT 

Figure  78  shows  an LH2 transfer  truck  system  to  transfer  and  meter  the LH2 from an 
underground  hydrant  in-the  ramp to the  airplane  receptacles. As with  the  tanker  truck 
concept, this  truck  connects  to  the  airplane by a powered boom controlled by the  driver. 
The LH2 supply  from the  hydrant to  the  truck  is  also  through  vacuum  insulated  lines. 
The GH2 vent recovery  system  will  connect by an  independent,  flexible  insulated  hose 
from the  airplane  to  the  hydrant recovery  system.  The  reason for the  separate  vent 
recovery  line is to  keep  the  recovery  system  connected to the  airplane  at  all  times  and 
allow the LH2 transfer  truck  to move  to other  airplanes.  The LH2 fuel  transfer  truck 
includes  a  hydrogen  leak  detection  system  and  a  fire  control  system. 

The fuel transfer  truck concept is a  practical  way to service  the  airplane if the  terminal 
boom concept  cannot be adopted.  The  transfer  truck-hydrant  system  offers  the  most  in 
versatility  in  that  one  truck could  supply  and  meter LH2 fuel  to many  airplanes.  It will 
add  to  the  congestion of the  ramp. 

GASEOUS  HYDROGEN  RECOVERY  LINE  TRUCK-CONCEPT 

Figure 79 shows a ,  truck to supply  and  connect  the  airplane GH2 vent  lines to  the 
recovery  system  in  the  ramp  mounted  hydrants.  These  vent  hoses  are  used  in 
conjunction  with  the  fuel  transfer  truck  system  previously  discussed  and  are  connected 
to the  airplane  at  all  times  the  airplane  is  parked.  The GHz flexible  hoses are  insulated 
flexible  sections  which  have  self-closing  poppet  valves a t  each  end to prevent  entrance 
of contaminating  atmospheres or materials,  eliminating  the need  for purging  the  lines 
before each  use of the hose.  Each  hose  section  also  has a pressure bleed-off system t o  
capture  the GH2 given off from  the hose as  it  warms  up  in  storage. 

The  vent recovery  lines are  required  where  the LH2 transfer  truck  fueling  system  is 
used  and  also at remote  locations  where  fueled  airplanes  are  on  standby.  The  use of this 
system at each  parked  airplane  is  necessary.  The  hanging  flexible  lines  are  not a safe 
arrangement  and  further  research would be  necessary  to  properly  design a vent 
recovery  system of this  type. 

FIXED  RAMP BOOM CONCEPT 

Figure  80  shows a concept  for transferring LH2 and GH2 recovery  from an  underground 
supply  system.  The booms as shown  are  controlled  remotely by an  operator  nearby. 
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Figure 78.-Liquid Hydrogen  Fueling-Remote Control Boom Truck 
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Figure 93. - Comparisons of Predicted Noise and Test Data, Total Noise and Noise Components 
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Figure 94.- Comparison Between Prediction and Test Data; Overall Sound Pressure and Tone 
Corrected Perceived Noise Levels and Tone Correction,Ground Static 
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Level flight: 122 m altitude, 74.5 m/s 
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Figure 96.- Comparisons of Predicted Maximum  Tone Corrected and  Effective Perceived Noise 
Levels  With  Test  Data 
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Upper  deck passenger 

Figure 82.-Passenger  Loading-Separate  Bridges 



passenger  decks  and  an  elevator  between  decks  for  in-flight  transferring.  The  support 
system is described  in  section 5.6 of this  report. Two other  concepts are discussed as 
follows. 

GALLEY INTEGRAL  ELEVATOR  SYSTEM 

The  galleys a t  each  end of the  cabin would include a built-in  elevator.  This  elevator 
would  be used  to  service the  upper  deck  galleys  from  the  lower  deck.  It  also would  be 
used  during  flight  to  transfer  galley  supplies. 

The  use of integral  elevators  to  supply  the  upper  deck  galleys would reduce  the  need for 
outside  lift  platforms to reach  the 8.22 m (27 ft)  level.  The  elevator  system could  be used 
in  the  cabin  service  support  to  the  upper  deck,  however,  this  method  used  in  either 
galley  or  cabin  support would be  slower  than  an  outside  lift  platform  system. 

GALLEYS ON LOWER DECK  ONLY-CONCEPT 

A third  concept  to  be  considered  is to have  all  the  galleys  located on the lower  deck  and 
the  upper  deck  served by elevators a t  each  end of the  passenger  cabin.   This 
arrangement would eliminate  the  need for outside  lifting  devices  and  upper  deck 
storage  areas. 

1 66 

L 

This  galley  arrangement would be practical  for  quick  ground  service  due  to  the  need 
only for lower  deck loading.  It would not  be  the  most  convenient for meal  service  to  the 
passengers. 
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